4.2 仮設計画

4.2.1 掘削工法の検討

主な掘削工法、及びその概要を表 4-4 及び表 4-5 に示す。本ポンプ場は港湾の水路内に築造する施設であることから、締切掘削が必要となる。このため、山留工法を採用する。

表 4-4 掘削工法と概要 (1/2)

工法	法切オープンカット工法	山留工法
概要図	構造物基礎	腹起し切梁
工法の概要	掘削周辺に安定斜面(法面)を残し ながら掘削を進める工法である。	山留め壁および支保工によって土砂の 崩壊を防ぎながら掘削を進める工法で ある。
利点	・山留め支保工を必要とせず経的性に優れる。 ・支保工の架設が不要であるほか、掘削機械の能力を最大限に発揮できるため、工期を短縮できる。	・掘削平面積を最小限にできるため、敷地を最大限に活用できる。 ・軟弱地盤に対応できる。
欠 点	・構造物の外周に法面を設けるため、 広い敷地を必要とする。 ・軟弱地盤の場合、法面が安定しない ため、深い掘削には適さない。	・法切オープンカット掘削に較べて工費が高く、工期も長くなる。 ・支保工が必要な場合は、掘削の支障となる。 ・掘削面積が広い場合は、支保工の継手仕口の緩み、縮みの影響が大きく生じるため、支保工の配置計画に留意する必要がある。

表 4-5 掘削工法と概要(2/2)

T. 法	アイランド工法	トレンチカット工法
概要図	腹起し 切梁 土留め壁 構造物基礎	腹起し切梁
工法の概要	掘削に先立って、外周に鋼矢板を打設し、その内側に法面を形成しながら内部を掘削する。 底面まで掘削が完了した後、中央部に底版を打設する。 底版から鋼矢板へ向かって斜めに切梁を設置し、土留めをしつつ法面部分をカットして行き、その他範囲の構造物を構築する工法である。	周にあたる部分のみを山留めしながら トレンチ状に掘削し、建物の外周部分 のみを構築する。 次に構築済みの外周部躯体を山留め として利用し、内部の躯体を掘削する
利点	・掘削平面積を最小限にできるため、敷地を最大限に活用できる。・支保工が少なくてすむ。・掘削面積が広い場合でも支保工の緩み、縮みは少ない。	・掘削面積が広い場合でも支保工の緩 み、縮みは少ない。
欠 点	・軟弱地盤の場合、法面が安定しないため、掘削深が大きい場合には適さない。 ・躯体の構築が複数ステップに分割されるため、工期が長く、工程も複雑となる。	で経済的でない。 ・躯体の構築が複数ステップに分割されるため、工期が長く、工程も複雑と

4.2.2 施工時締切外水位の設定

ポンプ場躯体を構築するにあたっては、水路内に仮締切を設けてドライ化する必要がある。仮 締切の設計にて用いる外水位は、舞鶴湾における直近5ヶ年の潮位実績により設定する。

舞鶴湾における過去 5 年間の潮位は $TP+0.42\sim+0.96m$ 付近にて変動している。このうち最も高い潮位は 2016 年の TP+0.958m であることから、仮締切の設計に用いる外水位は、これを丸め上げて TP+1.000m とする。

出典: 気象庁 HP (http://www.data.jma.go.jp/kaiyou/db/tide/genbo/index.php)

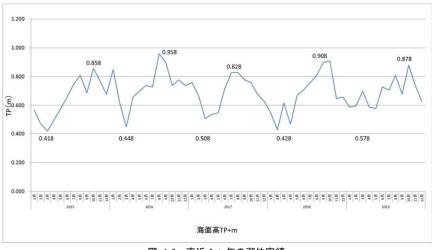
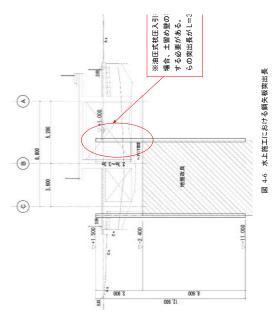


図 4-5 直近5ヶ年の潮位実績

4.2.3 鋼矢板型式及び打込み工法の選定

本工事の施工条件を以下に示す。鋼矢板は引き抜きによる周辺への影響を考慮し、地中の打込 文については残置する方針とする。このため、残置時の経済性に優れる<u>ハット型矢板を採用する</u>。 打ち込み工法の選定にあたっては、施工箇所に民家が近接していることから、<u>周辺環境に配慮</u> し、油圧圧入引抜工法を採用する。


・鋼矢板型式: 25H型 (突出長から鋼矢板 25H型を選定する。)

・鋼 矢 板 長 : L=12.50m ・環 境 対 策 : 無振動

・打 込 長: L=9.50m (L≦25m) ・突 出 長: Lt=3.00m (図 4-6参照)

・継 施 工:なし

・N 値: Nmax≤25

【資料】土留壁の打込み施工法の選定資料

1-3. 機種の選定

1-3-1. 油圧式杭圧入引抜機の選定

油圧式杭圧入引抜機の機種は鋼矢板型式、作業の種類及び最大N値により、次表を標準とする。

表1-1. 油圧式杭圧人引抜機の機種選定

	作業の種類	压入 (Nmax≦25)	E入 (Nmax≦50)	引抜き			
	П • III • IV <u>4</u> 4	圧入力 981~147	型(第1次基準値) lkN(100~150 t 級) l9kN(110~160 t 級)	排出ガス対策型(第1次基準値) 圧入力 981~1471kN (100~150 t 級) 引抜力 1079~1569kN (110~160 t 級			
鋼矢	VL·VIL型		型(第1次基準値) 順矢板用	排出ガス対策型(第1次基準値) 広幅鋼矢板用			
板型	II w· III w· IV w型		TkN(100~150 t 級) 9kN(110~160 t 級)	圧入力 981~1471kN (100~150 t 級) 引抜力 1079~1569kN (110~160 t 級			
20	10H・25H・45H・50H型	ハット刑 圧入力 1000	型(第2次基準値) が個矢板用 kn級(102 t 級) kn級(112 t 級)	_			

(注) 1. 木歩掛の適用範囲は表1-2の通りとするがこれにより難い場合は別途考慮する。2. 圧人 (Nmax≦50) は杭打ち用ウォータジェットを使用する場合に適用する。

表1-2. 圧入長 (引抜き長)

纲乡	そ板の	の型式	11型	Ⅲ型	IV TQ	VL型	VIL型	II w型	III w Tig	IVw型	10日型	25日型	45日型	50日型
		Nmax≦25	10以下	15以下	5以下 20以下 25以下		スド	12以下 25以		スド	12以下	25以下		
压入長	庄人	Nmax≦50 ジェット1台	12以下	18以下	20以下	254	25以下		25以下		14以下	25以下		
引抜長 (m)		Nmax≦50 ジェット2台			25以下	301	以下	15以下	301	八下	15以下		30以下	8
		引抜き	15K F	20以下	25以下	301	スド	15以下	301	スド		-	-	

- (注) 1. 圧入長(引散き長)とは地面からの鋼矢板の圧入長(引抜き長)であり、矢板長とは異なる。 2. 圧入(Nax250)は核打ち用ウェータジェットを使用する場合に適用する。 3. 広軸型鋼矢板長びホット形領矢板は一般的に本皮用網矢板として使用を出るため、 引抜きは原則行わないが、広軸型鋼矢板の1枚ちののみ本歩掛に掲載する。

表1-3. 型式毎の適用突出長

鋼矢板の型式	Π型	Ⅲ型	IV型	VL型	VIL型	IIw型	IIIw型	IVw型	10H型	25H型	45H型	50H型
突出高 (m)	2.0 以下	3.0 以下	4.0 以下	5.0 以下	5.0 以下	2.0 以下	3.0 以下	4.0 以下	2.0 以下	3.0 以下	4.0 以下	5.0 以下

突出長とは、鋼矢板の施工天端から地盤までの距離(突出長=鋼矢板長一圧入長)であり、自立で施工が可能である。 突出高は各型式毎に上表を標準値とする。尚、上表を超える場合は別途検討または別途積算とする。

- (注)型式毎の適用突出長は表1-3の適りとするが、以下の場合は別途検討とする。 ・圧入作業時の觸失破突出長が圧入長を超える場合。 (但し、土質が軟弱地盤の場合は、別途、圧入長の検討を行う事とする)

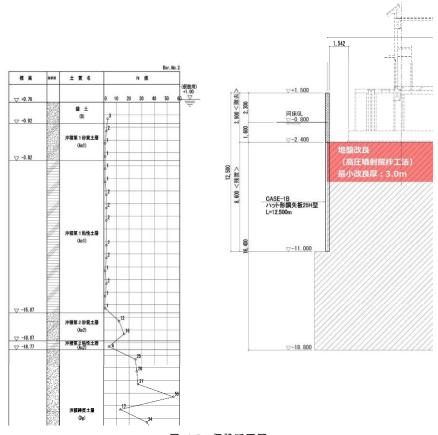
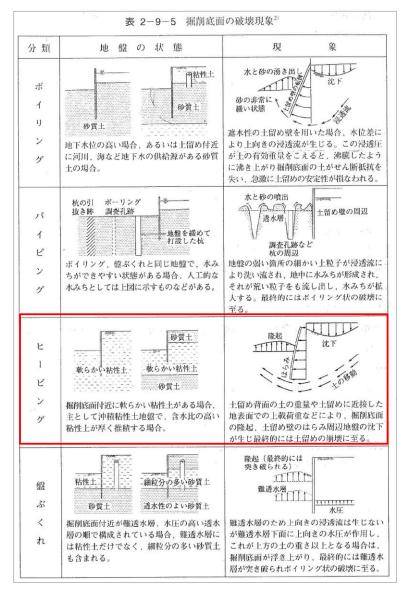
 - (但し、工資が転跡地域の場合は、別級、比人技の秘討を 波流、航速数等の外力の影響を受ける場合。 ・匠入機を相番タレーンにて補助吊または吊移動する場合。 ・弱材等の事前設置により、控えを取る事が出来る場合。 ・その他の条件により、標準的な比入作業が出来ない場合。

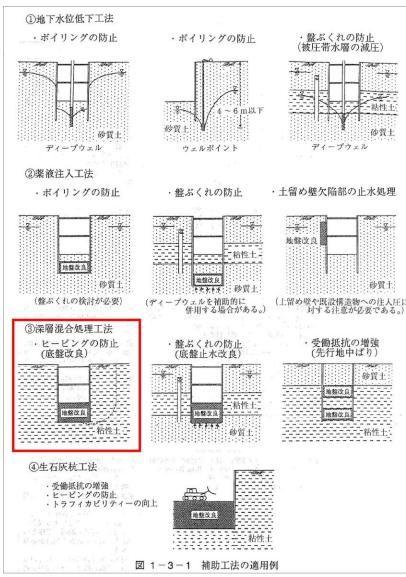
出 典:「SMP工法 鋼矢板圧入引抜標準積算資料 2018年版」(全国圧入協会)

42

4.2.4 土留め補助工法の検討

本ポンプ場の掘削底面は、N値がほぼゼロの軟弱粘性土層である(図 4-7)。掘削底面が軟弱層である場合は、トラフィカビリティ確保が課題となるほか、土留壁の根入れ部の受動抵抗が確保できず、ヒービング現象が生じる恐れがある。このため、補助工法として、高圧噴射撹拌工法による掘削底面の地盤改良を行うこととし、最小改良厚は3.0mとする(次頁以降参照)。


図 4-7 仮設断面図

(資料1) 掘削底面の破壊現象

出典:道路土工仮設構造物工指針(日本道路協会)

(資料2)補助工法の適用例

出典:道路十工仮設構造物工指針(日本道路協会)

(資料3)最小改良厚

7.1.4 十留めへ適用する際の留意点

土留め工事において開削底盤の深層混合処理工法による改良がヒービング防止、受働土圧の増加、横方向地盤反力係数の増加、地中梁の構築、等の目的で行われることがある。深層混合処理工法は、改良強度が高いことから改良地盤を単純な計算のみで改良厚さを設定した場合、改良必要厚さが期削幅に比べて薄くなる可能性がある。

この対策としては、改良厚さを十分確保する方法、また、改良目的を地中梁に とどめ、ヒービングに対しては土留め壁の根入れをヒービングが発生しない深度 まで貫入させることにより対処する方法がある。

また、地中梁としての必要計算厚さが小さくなる場合においても、施工特性と 実績を考慮した最小改良厚さとして、3.0m 程度4)を確保する必要がある。

深層混合処理工法により掘削底盤における地中梁としての機能を求める場合、 土留め壁と改良体との間に無改良上部を残存させると第4.6 章で記述したように 改良効果が極めて小さくなり、土留め壁の変形をもたらす結果となる。そのため、 機械攪拌式改良部と土留め壁の間に高圧噴射攪拌式による密着施工が必要であ る。

土留め内の掘削部は空打ちとして計画されることが多いが、この部分の地盤が 軟弱な粘性土である場合は、施工機械のトラフィカビリティの確保、掘削時のハンドリング向上のため q_u =100kN/m²程度の強度となるような改良を行うことが望まれる(図-7.1.7 参照)。

出典:「陸上工事における深層混合処理工法 設計・施工マニュアル 改定版」 (土木研究センター)

4.3 構造物基礎の検討

4.3.1 支持層の選定

杭基礎の先端は、良質な支持層に支持させる。ここでいう「良質な支持層」とは、「道 路橋示方書・同解説 IV下部構造編(H24 日本道路協会)| にて、以下のとおりに定義 されている。

- 1) 粘性土層は砂質土層に比べて大きな支持力が期待できず、沈下量も大きい場 合が多いため支持層とする際には十分な検討が必要であるが、N値が 20程 度以上(一軸圧縮強度 qu が 0.4N/mm2 程度以上) あれば良質な支持層と考え てよい。
- 2) 砂層,砂れき層は N値が 30程度以上あれば良質な支持層とみなしてよい。 ただし砂礫層では、礫をたたいて N 値が過大にでる傾向があるので、支持層 の決定には十分な注意が必要である。

出典:道路橋示方書·同解説Ⅳ下部構造編(H24 日本道路協会)

ボーリング調査結果より、Dg層は全体的にN値が高い洪積砂礫層である。なお、柱 状図 No.2 においては、N 値が 13 と局所的に低い値を示す箇所が確認されているが、 平均 N 値は柱状図 No.1 で 34、柱状図 No.2 で 32 であり、支持層になり得ると考えら れる。

このため、支持層は Dg 層とし、支持層の天端高は、柱状図 No.1、及び No.2 のうち、 深い方となる TP-18.77m を丸め下げて TP-18.80m とする。

1) 設計用 N 値

設計用提案 N 値は、地層毎の平均 N 値とする。N 値が 2 層に跨っている場合は、 基本的にはその値は除外する。

表 5.2.1 地点別平均 N 値の算出結果

Bor.No.	深度 (GL-m)	地層名	土質区分				١	V値				平均N值	提案值
	0.00-2.50	В	砂質土	4	2							3.0	3
	2.50-3.90	Asl	砂質土	1								1.0	1
1	3.90-17.35	Ac1	粘性土	1	1	1 2	2 2	2	1	1	2	1.4	1
	17.5-18.45	As2	砂質土	9								9.0	9
	18.45-30.50	Dg	礫質土	36 21	33 23	40 27	31 26	58	60	26	27	34.0	34
Bor.No.	深度 (GL-m)	地層名	土質区分				N	V値				平均N值	提案值
	0.00-1.70	В	礫質土	3								3.0	3
	1.70-4.60	As1	砂質土	2	1	1						1.3	1
2	4.60-16.65	Acl	粘性土	1 2	1	2	2	2	2	2	1	1.5	1
2	16.65-18.85	As2	砂質土	12	16							14.0	14
	18.85-19.55	Ac2	粘性土	4								4.0	4
3	19.55-30.50	Dg	礫質土	25 33	26 38	27	55	13	34	40	31	32.1	32

出典:舞下水委第203号雨水ポンプ場実施設計(詳細)業務委託 土質調査報告書 (R2.3 舞鶴市)

調 査 名 雨水ポンプ場実施設計(詳細設計)業務委託

ボーリング系: 事業・工事名 ボーリング名 No.1 調査位置 無額市 調査期間 合和 1年 10月 7日 ~ 1年 10月 11日 東 経 発 注 機 関 舞鶴市上下水道部下水道整備課 現 場代理人 コ ア 平野 静香 ボーリング 山上 三郎 ハンマー 落下用具 半自動落下式 試錐機 YBM-05 総掘進長 30.50m 度 F 機 エンジン N F A D - 10 ボンブ 6 P - 5

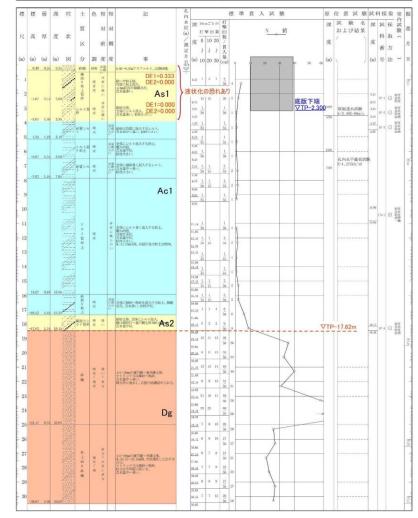


図 4-8 柱状図 No.1 における支持層位置

ボーリング名	No. 2	調査位置	舞鶴市	北綱
発注機関	舞鶴市上下水道	邓下水道整備課	調査期間 合和 1年 10月 15日 ~ 1年 10月 21日	東 経
周查業者名	株式会社 NJS 電話	主任技師	現 場 代理人 鑑定者 平野 静香	ボーリング 山上 三郎
孔口標高	H= 角 180° 方 0.78m 上 90° 27	北 0" 地 使	試 錐 機 YBM-05 パンマー 落下用具	半自動落下式
※ 掘 進 長	30.50m # F	東 知 和 和 和 和 和	エンジン NFAD-10 ポンプ	G P - 5

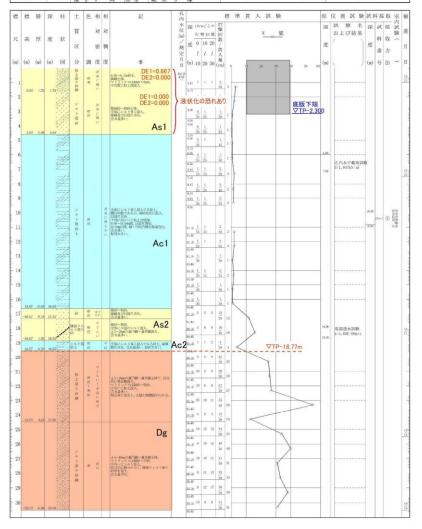


図 4-9 柱状図 No.2 における支持層位置

4.3.2 構造物の基礎形式

下水道施設の構造物を支持する基礎形式は、大きく分けて表 4-6 に示すとおり分類される。本ポンプ場の躯体の深度は地表面から 3m 程度と浅い一方、良質な支持地盤は地表面から 20m 程度の深い位置にあることから、杭基礎または、地盤改良を併用した直接基礎の採用について検討する。

表 4-6 基礎支持形式

	表 4-6 基礎文持形式
形式	特徴
直接基礎	・良好な支持地盤が浅いところに存在する場合に用いられ、地盤に直接荷重を伝える基礎形式である。鉛直力を底面反力で、水平力を底面のせん断抵抗で負担させる。 ・地盤の支持力、沈下量の検討を行った結果が満足すべきものであれば、工費、工期的に最も有利な基礎形式といえる。 ・構造設計は一般に浅い剛体基礎として扱う。 ・地盤改良は、在来地盤が良好でない場合に、不良地盤を置き換えたり締固めを行うなどして良好な地盤に改良し、直接基礎を可能にするものである。その目的は、支持力の増加、沈下の減少、透水性の増減、過剰水圧の除去等である。
杭基礎	・支持層が深い場合に一般的に用いられる工法である。鉛直力は 杭先端反力と周面摩擦力で負担し、水平力は杭の曲げに伴う変 形で側面地盤に伝達される。 ・杭の種類としては、既成杭、場所打ち杭、深礎などがある。 ・構造設計は一般に深い弾性体基礎として扱う。
ケーソン基礎	 ・地上で製作した比較的大型で中空の基礎躯体を、掘削しながら 沈下定置させる基礎であり、施工方法により、オープンケーソ ンとニューマチックケーソンがある。 ・ケーソン基礎と直接基礎の設計上の区分点は主として、基礎に 働く水平力ないし転倒モーメントに対して基礎側面に働く支 持力を考えるか否かによって定まる。

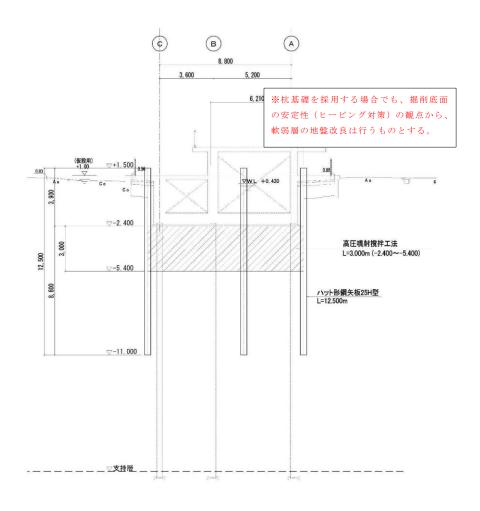


図 4-10 杭基礎の概要図

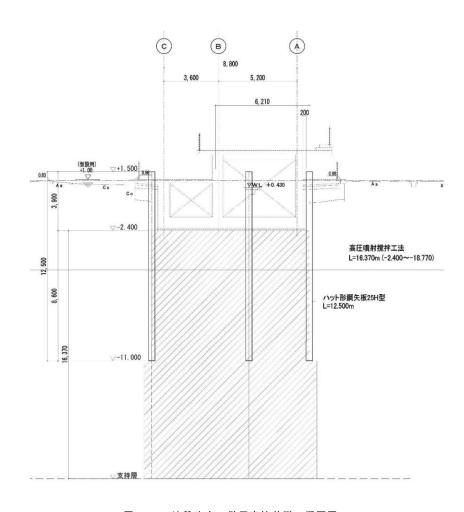


図 4-11 地盤改良工併用直接基礎の概要図

4.3.3 杭基礎形式の検討

本ポンプ場は港湾内に築造されるポンプ場のため、<u>各基礎形式の適用性の目安より、</u> 杭工法は基本的に水上施工が可能な打込み杭系の工法、もしくは回転杭系の工法が候 植となる。

打込み杭系、及び回転杭系の工法概要を表 4-7 に示す。<u>打込み杭工法は、振動及び</u> 騒音が極めて大きく、民家が近接する本ポンプ場では、環境面から採用が困難である。 よって、基礎形式を杭基礎とする場合は、回転杭工法を採用する。

1	\			Ī							杭	とは						Ī		* *	世世	ケーンま		201	Ī
	/		基礎形式		桂	J.	机工法			中挺り	B.I	油		間管	7		折打							鋼管矢板基礎	t
		/		直接基礎	P	-	胃管抗	PH	C統	+SC III		RE1	73°2	カイル	ンガー	*		7	m	100	111	=	w	報報	10.00
-	適用条件				HC統・SC税	打御工法	ハンマ工法	最終打想方式	噴出程律方式	打設方式	最終打撃方式	機出指排方式	打設方式	ルセメント校工法	12	・ルケーシンを工法	リバース工法	ースドリル工法	回転机工法	組就深聯	柱状体深礎	オーマチック	オープン	(打込み工法)	地中連続整系礎
1	×	表際近	労又は中間的にごく軟回職がある。	1	0	0	0	0	0	0	0	0	0	0	0	×	0	0	0	×	×	0	Δ	0	C
	特朗	中間層にごく硬い脂がある		7	Δ	Δ	Δ	0	0	0	0	0	0	0	0	Δ	0	×	0	0	0	0	Δ	Δ	10
П	1		れき種 50mm以下	7	Δ	0	0	0	0	0	0	0	0	O	0	0	0	0	O	0	0	0	0	0	6
J	支持撤までの状態		北市径 50~100mm	7	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	0	0	Δ	×	0	0	ō	0	0	O	Δ	1
П	松		れき後 100~500mm	7	×	×	×	×	×	×	×	×	×	×	×	Δ	×	×	×	0	0	0	Δ	×	1
П		in	状化する地盤がある	7	0	O	0	O	0	0	0	Ó	0	0	0	0	O	0	0	7	7	Ö	õ	0	10
1			5m未満	0	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	0	7	×	×	×	
			5~15m	Δ	0	O	0	0	0	0	0	0	0	0	0	0	Δ	0	0	O	0	O	0	Δ	1
П		100	15 ~ 25 m	×	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ö	0	1
Ų		蘆	25 ~ 40 m	×	0	0	0	0	0	0	0	0	0	0	0	0	0	Δ	0	Δ	Δ	0	0	0	6
200	140		40~60m	×	Δ	0	0	Δ	Δ	Δ	0	Ö	0	0	0	Δ	Ö	×	0	×	×	Δ	Ö	0	1
ē	10		60m ELE	×	×	Δ	Δ	×	×	×	×	×	×	Δ	Δ	×	Δ	×	0	×	×	×	Δ	Δ	1
١	支持層の状態	黄	Ø · ₩ h.8 (30 ≤ N)	0	0	Ö	0	0	0	0	0	0	0.	0	0	0	0	0	0	Ö	0	0	Ö	Ö	10
	鉄		粘性土 (20 ≤ N)	0	0	0	0	0	Δ	×	0	Δ	×	Δ	Δ	0	0	0	Δ	0	0	Δ	Δ	0	1
	786		飲料・土丹	0	×	Ó	Δ	O	Δ	×	0	Δ	×	Δ	Δ	0	0	0	Δ	Ö	0	0	0	0	10
		193	6E N2	0	×	×	×	×	×	×	×	×	×	×	×	Δ	Δ	Δ	×	Ö	0	Δ	×	×	1
		11年.	大きい。勝面の凹凸が激し 女持備の位置が同一深度で は無い可能性が高い	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	0	0	0	0	0	0	Δ	×	0	0
		#	下水位が始表面近い	Δ	0	0	0	0	0	0	0	0	0	0	0	Δ	Δ	Δ	0	Δ	۵	0	0	0	1
	地下水	1	青水量が極めて多い	Δ	0	0	0	0	0	0	0	0	0	Δ	Δ	Δ	Δ	Δ	0	×	×	0	0	0	1
	の状態	地表上	り2m以上の被圧地下水	×	0	0	0	×	×	×	×	×	×	×	×	×	×	×	0	×	×	Δ	Δ	0	T
		地	下水流速3 m/min 以上	×	0	0	0	0	×	×	0	×	×	×	×	×	×	×	0	×	×	0	Δ	0	
4	沙淡		支持抗	1	0	0	0	O	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	V	U
×	taxes.		摩擦梳	1	0	0	0	×	×	×	×	×	×	0	×	0	0	0	×	/	1	1	1	1	ľ
٦	水上		水深5m未満	Δ	0	0	0	Δ	Δ	Δ	Δ	Δ	Δ	×	×	×	×	×	0	1	1	Δ	Δ	0	I
	施工		水深5m以上	×	Δ	0	0	Δ	Δ	Δ	Δ	Δ	Δ	×	×	×	×	×	0	1	1	Δ	Δ	0	T
8		- 17	薬空間が鈍い	0	Δ	Δ	Δ	Δ	Δ	.Δ.	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	0	0	Δ	Δ	×	ŀ
EL MAN			時代の加工	1	0	0	0	×	×	×	×	×	×	×	×	×	×	×	0	×	1	V	1	Z	I
÷		有	客ガスの影響	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	×	×	×	0	0	I
	周辺		抵點騷音対策	0	×	×	Δ	Δ	0	0	Δ	0	0	0	0	0	0	0	0	0	0	0	0	×	T
	環境	[8]	要構造物に対する影響	0	×	Δ	Δ	Δ	0	0	Δ	0	0	0	0	0	0	0	0	Δ	Δ	Δ	Δ	Δ	1

表 4-7 基礎形式の適用性の目安

出 典:「道路橋示方書 IV下部構造編」(日本道路協会)

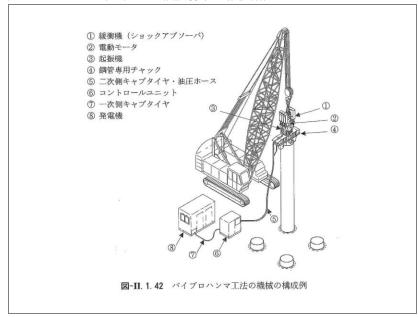
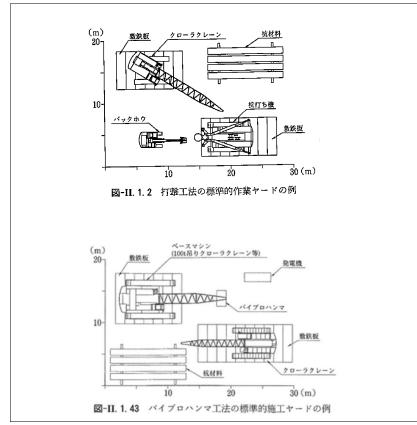

53

表 4-8 打込み杭工法(打撃、バイブロ)と回転杭工法の比較表

	表 4-8 打込み	102 N. W. W.	
	打込み	杭工法	回転杭工法
	打擊工法	バイブロハンマ工法	
概要図		-1144-144	THEORETICAL PROPERTY OF THE PR
	(E) + 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	(Scale - RZ.)	※小型機による施工概要図
工法 概要	・油圧ハンマ、ドロップハンマ等によ り、既製杭の頭部を打撃して杭を所定 の深度まで打ち込む工法。	・バイブロハンマを用いて杭を所定の深 度まで打ち込む工法。	・先端部に羽根を有する鋼管杭を回転貫入 させる工法。 ・杭頭部に回転力を付与する工法として、杭 頭回転式と胴体回転方式があるが、杭頭回 転式は、三点式杭打機が必要となり、施工 機械が大きくなるため、今回は胴体回転方 式とする。
施工性	・使用重機が大きく、施エヤード (20 m ×30m) 確保のため、周辺道路の占有 が必要となる。	・使用重機が大きく、施工ヤード (20 m ×30m) 確保のため、周辺道路の占有 が必要となる。	・胴体回転式とすることで、ベースマシンを 0.7 ㎡級バックホウ相当の小型機とするこ とができる。
	Δ	Δ	0
環境性	・本工法は騒音・振動が大きく、近年では、市街地での施工に用いられることはほとんど無い。 ・施工重機が大型であるため、周辺に与える威圧感が大きく、転倒のリスクも大きい。	・本工法は、打撃工法に比べれば、振動の絶対値を抑えることができるが、打撃工法に比べて、振動が長時間連続して発生するため、周辺への影響低減対策が十分とは言えない。 ・施工重機が大型であるため、周辺に与える威圧感が大きく、転倒のリスクも大きい。	・低振動・低騒音であり、周辺への環境影響 は最も優れる。
	×	Δ	0
経済性	・回転杭工法に比べて安価となる。	・回転杭工法に比べて安価となる。	・打ち込み杭工法に比べて高価である。
	0	0	Δ
評価	周辺に民家が近接していることから、施 工機械が大きく威圧感があり、騒音・振 動が大きく、採用は難しい。	周辺に民家が近接していることから、施工機械が大きく成圧感があり、騒音・振動が大きく、採用は難しい。	低騒音・低振動の工法であり、施工機械が小型で威圧感も小さく、周辺への環境影響を抑えることができる。また、小型機による施工となるため、仮設構台の規模が小さくなる。
	×	Δ	0

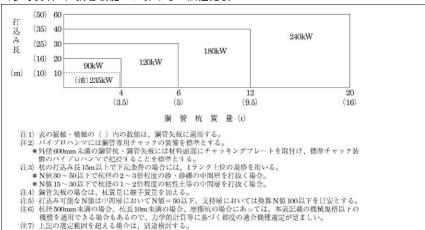

54

a) バイブロハンマ工法 (ポンプ場基礎杭) の機械構成

出典:杭基礎施工便覧(H27.3 日本道路協会)

b) 打撃工法、バイブロハンマ工法の標準施工ヤード

出典: 杭基礎施工便覧 (H27.3 日本道路協会)


c) バイブロハンマ工法について

構台杭、及び鋼矢板の一部は、施工性からバイブロハンマ工法による打設となる。 バイブロハンマ工法には大別して、電動式と油圧式があるが、両者は、騒音・振動に よる環境影響に違いがある。

ポンプ場基礎杭(鋼管杭)の施工に用いるバイブロハンマは、参考資料1より、電動式90kWとなる(油圧式は打込長10mまでが適用範囲である)。一方、構台杭、及び鋼矢板の一部で用いるバイブロハンマは、次頁の参考資料2に示す鋼矢板施工法選定表より、油圧式が選択可能である(H鋼杭についても油圧式の歩掛が有る。)。また同表によれば、電動式は環境対策「無し」、油圧式は「低振動」工法に分類される。

以上より、ポンプ場基礎杭をバイブロハンマ工法とする場合は電動式となり、騒音・振動対策を講じることが難しいが、構台杭、及び鋼矢板の一部については、油圧式を選択できるため、周辺への騒音・振動対策に配慮した施工が可能となる。

(参考資料1)鋼管杭施工における工法選定表

出典:バイブロハンマ工法標準積算要領(H27.9バイブロハンマ工法技術研究会)

(参考資料 2) 鋼矢板打込み工法選定表

				維施工無し				経施工有り	
鋼矢板 型式	環境 対策	打込長		Nill				ΝŒ	
-			Nmax≦25 ※1	25 <nmax≦50 %1,2<="" th=""><th>50<nmax≨180 %2<="" th=""><th>≦600</th><th>Nmax≦25 ※1</th><th>25<nmax≦50 th="" ※1.2<=""><th>50<nmax≤180 %<="" th=""></nmax≤180></th></nmax≦50></th></nmax≨180></th></nmax≦50>	50 <nmax≨180 %2<="" th=""><th>≦600</th><th>Nmax≦25 ※1</th><th>25<nmax≦50 th="" ※1.2<=""><th>50<nmax≤180 %<="" th=""></nmax≤180></th></nmax≦50></th></nmax≨180>	≦600	Nmax≦25 ※1	25 <nmax≦50 th="" ※1.2<=""><th>50<nmax≤180 %<="" th=""></nmax≤180></th></nmax≦50>	50 <nmax≤180 %<="" th=""></nmax≤180>
		L<4m	電動式バイ	ブロハンマ					
	無し	4m≦L≦9m	油圧式抗圧入引抜機		電助式パイプロハンマ ウォータジェット分用		電動式バ	イブロハンマ	電助式バイブロハンマ フォータジェット使用
		9m <l≦19m< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td> </td></l≦19m<>							
		L<4m	油圧式バイ	ブロハンマ			油圧式パ	イブロハンマ	
IIw켚	低振動	4m≦L≦12m	油圧式杭圧入引拔機		油圧式パイプロハンマ ウォータジェット併用	i –	油圧式坑圧入引抜機		油圧式パイプロハンマ ウォータジェット併用
		12m <l≦19m< td=""><td>Jacob Mark Colonia</td><td></td><td></td><td></td><td></td><td></td><td></td></l≦19m<>	Jacob Mark Colonia						
	無援動	4m,≦L≦25m	油圧式机圧入引抜機	油圧式板圧入引払機ウォータジェット併用	50 <ntrax至600 油圧式抗圧入引抜 (硬質地盤専用)</ntrax至600 	拠	油压式抗压入引抜機	油圧式机圧入引接機 ワオータジェット供用	-
		L<4m	健助式バイ	ブロハンマ			電動式パイブロハンマ		
	無し	4m≦L≦12m	油圧式抗圧入引抜機		電動式バイブロハンマ ウォータジェット併用	_	油圧式坑圧入引抜機	7	電動式バイブロハンマ ウォークジェットが用
		12m <l≦25m< td=""><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td></l≦25m<>						_	
		L<4m	油圧式バイ	ブロハンマ			油圧式バ	イブロハンマ	
IVw컨	低級動	4m≦L≦9m	油圧式抗圧入引抜機		治圧式パイプロハンマ ウォータジェット併用	-	油圧式抗	正入引接機	油圧式バイブロハンマ ウォータジェット併用
		9m <l≦25m< td=""><td>·周正3470正入51放號</td><td></td><td></td><td></td><td></td><td>油圧式パイプロハンマ</td><td></td></l≦25m<>	·周正3470正入51放號					油圧式パイプロハンマ	
	無援動	4m≤L≤25m	油庄式杭圧入引抜機	油圧式抗圧入引扱機 ウォータジェット併用	50<Чтаь≦600 油压式抗压入引物: (硬質地盤專用)	装	油压式抗压入引抜機	油圧式坑圧入引抜機 ウォータジェット使用	_
		L≦4m	電動式バイ	ブロハンマ					
	無1.	4m <l≤6m< td=""><td>油圧式抗圧入引放機</td><td></td><td>電動式パイプロハンマ</td><td></td><td>電動式パー</td><td>イブロハンマ</td><td>電助式パイプロハンマ</td></l≤6m<>	油圧式抗圧入引放機		電動式パイプロハンマ		電動式パー	イブロハンマ	電助式パイプロハンマ
	PR L	6m <l≦15m< td=""><td></td><td></td><td>ウォータジェット併用</td><td></td><td></td><td></td><td>ウォータジェット併用</td></l≦15m<>			ウォータジェット併用				ウォータジェット併用
		15m <l≦19m< td=""><td>-</td><td>-</td><td></td><td></td><td></td><td>-</td><td></td></l≦19m<>	-	-				-	
10HZ/		L<4m	油圧式パイ	ブロハンマ					
	低振動	4m≦L≦12m	油压式抗压入引放機		油圧式パイプロハンマ	_	油圧式パー	イブロハシマ	油圧式バイフロハンマ
		12m <l≦15m< td=""><td>·</td><td></td><td>ウォータジェット併用</td><td></td><td></td><td>•</td><td>ウォータジェット併用</td></l≦15m<>	·		ウォータジェット併用			•	ウォータジェット併用
		15m <l≦19m< td=""><td></td><td></td><td></td><td></td><td></td><td>=</td><td></td></l≦19m<>						=	
	無振動	4m≦L≦12m	油庄式杭庄入引核機	治压式抗压入引振楼			油圧式杭圧入引抜機	油压式机压入引板模	
	無飯馴	12m <l≦14m< td=""><td>_</td><td>ウォークジェット併用</td><td>_</td><td></td><td>_</td><td>ウォータジェット併用</td><td>_</td></l≦14m<>	_	ウォークジェット併用	_		_	ウォータジェット併用	_
		L<4m	電動式パイ	ブロハンマ					
		4m≦L≦6m	油压式机压入引接模		電動式バイブロハンマ		電動式バー	イブロハンマ	電動式パイプロハンマ
	無し	6m <l≦19m< td=""><td></td><td>· </td><td>ウォータジェット使用</td><td> -</td><td></td><td></td><td>ウォータジェット併用</td></l≦19m<>		·	ウォータジェット使用	-			ウォータジェット併用
- 1		19m < L≦25m		_				_	
25H <u>판</u>		L<4m	油圧式パイ	ブロハンマ			油压式パ	イブロハンマ	
		4m≦L≦12m			油圧式パイブロハンマ		油圧式抗圧入引拔機		油圧式バイブロハンマ
	低振動	12m <l≤19m< td=""><td>油圧式杭圧入引振機</td><td></td><td>ウォータジェット使用</td><td> - </td><td colspan="2"></td><td>ウォータジェット併用</td></l≤19m<>	油圧式杭圧入引振機		ウォータジェット使用	-			ウォータジェット併用
		19m <l≦25m< td=""><td></td><td>_</td><td colspan="2">-</td><td></td><td></td></l≦25m<>		_	-				
	無振動		油圧式抗圧入引振機	油圧式抗圧入引振機		_	油圧式抗压入引抜機	油压式机压入引抵模	

^{※1.}以下の条件において、現場条件(転石等)により、やむを得ずウォータジェット併用並工とする場合は、別途考慮する。 ただし、低級効条件の袖圧式抗圧人引放機能工区分については、油圧式パイプロハンマ・ウォータジェット併用とする。

出典:国交省土木工事標準積算基準書(共通編)(R2年度版 建設物価調査会)

[・]N値条件(遺動式パイプロハンマ、油圧式パイプロハンマ): Nmax<50

[・]N 飯条件(油圧式抗圧入引抜機): Nmax≤25

^{※2.} バイブロハンマエにおけるN値区分については、25<Nmax<50、50≤Nmax≤180と読み替える。

4.3.4 回転杭工法の選定

a) 回転杭仕様の検討

1) 施工性から決まる杭先端位置や仕様

回転杭工法は、硬質な粘性土層や粘土混じりの砂礫層において、貫入困難となることが多く、杭仕様及び配置の計画にあたっては、近隣の施工事例を調査した。

本ポンプ場の近傍(静渓川の上流)では、回転杭(つばさ杭)の施工実績があり、 粘土混じりの洪積礫質土層(Dg層)において、貫入が困難となったことが確認され ている。これは、固結粘性土において先端翼が滑ることにより、トルクが伝達されず 貫入が困難になる現象である。

このため、本ポンプ場における回転杭の適用性について、専業者にヒアリングを行ったところ、0.8m程度を超える翼径は、本ポンプ場の地盤条件では適用性が低いとの回答が得られたことから、杭仕様は以下より選定する。

軸 径	翼径(1.5 倍径)	翼径(2 倍径)
Dp	Dw	Dw
φ 400	600	800
φ 500	750	

ボーリング名	No. 2	調査位置	無額市		北綱	
発注機関	舞鶴市上下.	水道部下水道整備課	調査期間 合和 1年 10月 15日 ~ 16	下 10月 21日	東 経	
调查業者名	株式会計 KJS 電話	主任技師	現場 コア 発作 理人 鑑定者	平野 辞香	ボーリング 責任者	10 E 3.05
化口標高	II= 角 ISO" 0.78m I: 90"	方 北 0° 地 (更 目 試 錐 機 YBM-05 NFAD-10	ハンマー 落下用具	* A	動落下式
総 掘 進 長	30, 50m 度 下	向 180° d 配 90° 0°	職 ■ エンジン NFAD-10	ポンプ		G P - 5

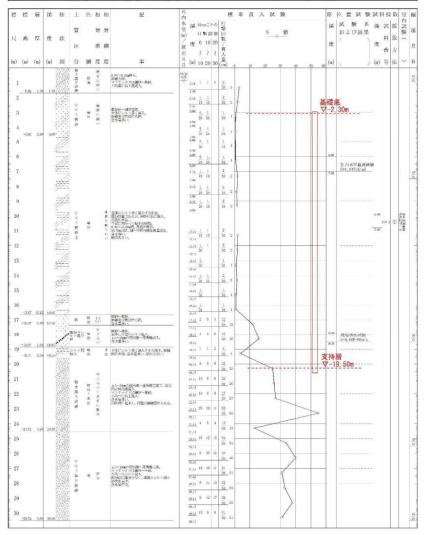
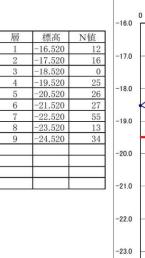


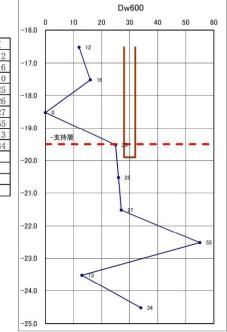
図 4-12 杭先端位置図

2) 杭先端N値の計算結果

以下の条件における杭先端N値の計算結果を、次頁以降に示す。

軸 径	翼径(1.5 倍径)	翼径(2 倍径)
ϕ 400	600	800
φ 500	750	

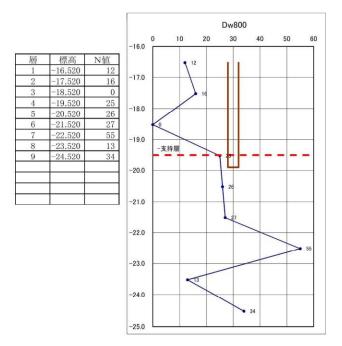

先端N値の計算


(Bor.No.2)

工法名:

杭底の標高 = -19.90m

ϕ 400	7	Z均N值	i = i	29.88	/ 1.20	=24.90	\rightarrow	24.0
(19.5	+	25.0)/2×	0.22	=	4.90
(25.0	+	26.0)/2×	0.98	=	24.98
		計				1.20		29.88

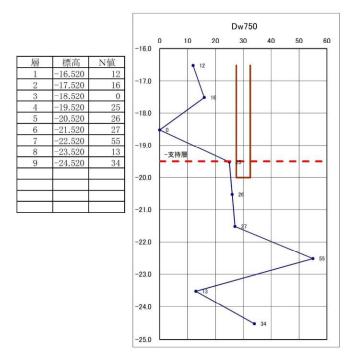

先端N値の計算

(Bor.No.2)

工法名:

杭底の標高 = -19.90m

φ 400	平均	JN値	<u> </u>	38.50	/ 1.60	=24.06	\rightarrow	24.0
(1	4.5	+	25.0)/2	× 0.42	=	8.30
(2	5.0	+	26.0)/2	× 1.00	=	25.50
(2	6.0	+	26.2) / 2	× 0.18	=	4.70
		計				1.60		38.50


先端N値の計算

(Bor.No.2)

工法名:

杭底の標高 = -20.00m

	1-2-21 VIE			/ 1.50	-94.00		24.0
(18.3	+	25.0	$)/2 \times$	0.27	= 1	5.84
(25.0	+	26.0)/2×	1.00	=	25.50
(26.0	+	26.2)/2×	0.23	=	6.01

3)支持力の検討

自家発電機室部とポンプゲート部の支持力計算の結果を、次頁以降に示す。 なお、杭径 φ 400・翼径 Dw600 の杭は、杭の支持力が Ra=164kN/本と極めて小さ く、以下の検討では除外して考える。

負の周面摩擦力(ネガティブフリクション)(土木基準式) 道路橋示方書平成24年

施設名 : 舞鶴市静渓雨水ポンプ場 自家発電機室 工法名 : 先端翼付き回転貫入鋼管杭工法

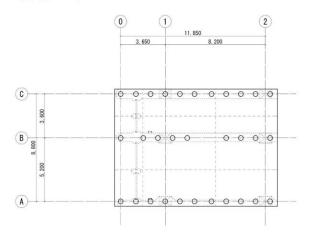
a)鉛直支持力の検討

a)如但又付力少便的							
		CASE.1	CASE.2	CASE.3	CASE.4	CASE.5]
		φ 400	φ 400	φ 500	φ 500	φ 600	
項目	単位	Dw600	Dw800	Dw750	Dw1000	Dw900	備考
杭径 d	(m)	0.400	0.400	0.500	0.500	0.600	
先端翼 Dw	(m)	0.600	0.800	0.750	1.000	0.900	
杭 長 L	(m)	16.4	16.4	16.5	16.5	16.6	
《極限支持力》							
先端支持力係数 α		130	115	130	115	130	
杭先端の平均N値 N		25	25	25	25	25	
極限支持力度 qd	(kN/m^2)	3250	2875	3250	2875	3250	
$\Delta w = \pi \times Dw^2/4$	(m ²)	0.283	0.503	0.442	0.785	0.636	
RP=qd·Aw	(kN)	919.8	1446.1	1436.5	2256.9	2067.0	
《周面摩擦力》							
周長 U=π×d	(m)	1.257	1.257	1.571	1.571	1.885	
負の摩擦							
砂質土 Ln1	(m)	1.10	1.10	1.10	1.10	1.10	As1層
fn1=3N (≦150)	(kN/m^2)	3.0	3.0	3.0	3.0	3.0	N=1
粘性土 Ln2	(m)	2.00	2.00	2.00	2.00	2.00	Ac1層
fn2=Cまたは10N(≦100)	(kN/m^2)	29.0	29.0	29.0	29.0	29.0	C=29 N=1
粘性土 Ln3	(m)	10.80	10.80	10.80	10.80	10.80	Ac1層
fn3=Cまたは10N(≦100)	(kN/m^2)	29.0	29.0	29.0	29.0	29.0	C=29 N=1
杭頭~中立点 ΣLni	m	14.00	14.00	14.00	14.00	14.00	
fn= Σ (Lni•fni)	kN/m	374.5	374.5	374.5	374.5	374.5	
Rnf=U•fn	kN	470.7	470.7	588.3	588.3	705.9	
正の摩擦							
砂質土 L1	(m)	1.80	1.60	1.75	1.50	1.70	As2層
f1=3N (≦150)	(kN/m^2)	22.0	22.0	22.0		22.0	
中立点~杭先端 ΣLi	m	2.40	2.40	2.50	2.50	2.60	100 OF 10 AT 10 AT 10
f= Σ (Li•fi)	kN/m	39.6	35.2	38.5	33.0	37.4	
Ruf=U•f	kN	49.8	44.2	60.5	51.8	70.5	
《杭の有効重量》							
土の単位重量 yt	kN/m ²	8.0	8.0	8.0	8.0	8.0	浮力を考慮
杭の単位重量 w	kN/m	0.851	0.851	1.069		1.285	
十の有効重量 Ws'	kN	2.4	2.4	3,9	3.9	5.9	中立点より下方
杭の有効重量 W	kN	12.3	12.3	15.6		18.9	
杭の有効重量 W'	kN	10.5	10.5	13.2	13.2		中立点より上方
《鉛直支持力》							1
Ru=Ru'=Rp+Ruf	kN	969.6	1490.3	1497.0	2308.7	2137.5	
Ra'=1/1.5 · (Ru'-Ws')+Ws'		200.00		22.10			
-(Rnf+W)	kN	164.0	511.0	395.0	936.0	702.0	
Ra=1/3•Ru	kN	323.0	496.0	499.0	769.0	712.0	
Ra1=MIN[Pa,Ra]	kN	164.0	496.0	395.0	769.0	702.0	
o)杭休応力度の検討		CASE.1	CASE.2	CASE.3		CASE.5]
age to	1 202 22	φ 400	φ 400	φ 500	φ 500	φ 600	No. 1
項目	単位	Dw600	Dw800	Dw750	Dw1000	Dw900	備考
杭頭反力 Po=Ra1'	kN	164.0	496.0	395.0		702.0	
鋼材の降伏点 σy	N/mm ²	315.0	315.0	315.0		315.0	
杭の厚さ t	mm	9.0	9.0	9.0		9.0	
杭の純断面積 Ap	m ²	0.0098	0.0098	0.0123	0.0123	0.0148	
	24.0404	7740	1172.6	1195.8	1644.6	1708.6	
1.2 · (Po+Rnf+W')	kN	774.2	1112.0	1133.0	1011.0	1100.0	
1.2•(Po+Rnf+W') σ y•Ap	kN kN	3087.0	3087.0	3874.5		4662.0	

負の周面摩擦力(ネガティブフリクション)(土木基準式) 道路橋示方書平成24年

施設名 : 舞鶴市静渓雨水ポンプ場 ポンプゲート 工法名 : 先端翼付き回転貫入鋼管杭工法

a)鉛直支持力の検討


項目			CASE.1	CASE.2	CASE.3	CASE.4	CASE.5	ti Is
核径 d (m) 0.400 0.400 0.500 0.500 0.600 0.600								
接機関 Dw		単位	Dw600	Dw800	Dw750	Dw1000	Dw900	備考
杭長 L	杭径 d	(m)	0.400	0.400	0.500	0.500	0.600	
生態及持力解数 α 130 115 130 130 130 130 130 130 130 130 130 130	先端翼 Dw	(m)	0.600	0.800	0.750	1.000	0.900	
先端支持力係数 α 130 115 130 115 130 1	杭 長 L	(m)	16.4	16.4	16.5	16.5	16.6	
核先端の平均N値 N (kN/m²) 3250 2875 3250 2875 3250 (Relix 文持力度 qd (kN/m²) 3250 2875 3250 2875 3250 0.636 (RP=qd-Nw (kN) 919.8 1446.1 1436.5 2256.9 2067.0 (周面摩擦力)	《極限支持力》							
極限支持力度	先端支持力係数 α		130		130	115		
Aw= π × Dw ² /4	杭先端の平均N値 N		25	25	25	25	25	
RP=qd·Aw (kN) 919.8 1446.1 1436.5 2256.9 2067.0 (周面壁様力)			3250	2875	3250	2875	3250	
個面摩睺力	$Aw = \pi \times Dw^2/4$	(m ²)	0.283	0.503	0.442	0.785	0.636	
関長 U=π×d		(kN)	919.8	1446.1	1436.5	2256.9	2067.0	
### おかけ	《周面摩擦力》							
### Description	周 長 U=π×d	(m)	1.257	1.257	1.571	1.571	1.885	
### 1=2N (≤100)	負の摩擦							
 粘性士 Ln2 (m) 2.00 2.00 2.00 2.00 2.00 2.00 C-29 N-1 血≥Cまたは10N(≦80) (kN/m²) 29.0 29.0 29.0 29.0 29.0 29.0 C-29 N-1 粘性土 Ln3 (m) 10.80 10.80 10.80 10.80 10.80 Ac1 M	砂質土 Ln1		1.10	1.10	1.10	1.10	1.10	As1層
### 10.0 (★N/m²) 29.0 29.0 29.0 29.0 29.0 29.0 29.0 Act	$fn1=2N \ (\le 100)$	(kN/m^2)	3.0	3.0	3.0	3.0	3.0	N=1
### 注 Ln3 (m) 10.80 10.80 10.80 10.80 Ac1層 fh3=Cまたは10N(≤80) (kN/m²) 29.0 29.0 29.0 29.0 29.0 C=29 N=1 抗頭〜中立点 ∑Lni m 14.00 14.00 14.00 14.00 14.00 14.00 fh=∑(Lni·fni) kN/m 374.5 374	粘性土 Ln2		2.00	2.00			2.00	Ac1層
情3=Cまたは10N(≦80) (kN/m²) 29.0 29.0 29.0 29.0 29.0 C=29 N=1 杭頭~中立点 ∑Lni m 14.00 14.00 14.00 14.00 fh=∑(Lni·fni) kN/m 374.5 37	fn2=Cまたは10N(≦80)	(kN/m^2)	29.0	29.0	29.0	29.0	29.0	C=29 N=1
 杭頭〜中立点 ∑Lni m 14.00 1.75 150 1.70 As2B 1.70 1.70<	粘性土 Ln3	(m)	10.80	10.80	10.80	10.80	10.80	Ac1層
## Fig. 10 Fin	fn3=Cまたは10N(≦80)	(kN/m^2)	29.0	29.0	29.0	29.0	29.0	C=29 N=1
Rn=U・fn	杭頭~中立点 ΣLni	m	14.00	14.00	14.00	14.00	14.00	
正の摩擦	fn= Σ (Lni•fni)	kN/m	374.5	374.5	374.5	374.5	374.5	
 砂質士 L1 (m) 1.80 1.60 1.75 1.50 1.70 As2層	Rnf=U•fn	kN	470.7	470.7	588.3	588.3	705.9	
田=2N (≦100)	正の摩擦							
中立点〜杭先端 ΣLi m 2.40 2.40 2.50 2.50 2.60 (主义(Li・fi) kN/m 39.6 35.2 38.5 33.0 37.4 (Ruf=U-f kN 49.8 44.2 66.5 51.8 70.5 (株の有効重量》	砂質土 L1	(m)	1.80	1.60	1.75	1.50	1.70	As2層
F Σ (Li·fi) kN/m 39.6 35.2 38.5 33.0 37.4 Ru F U·f kN 49.8 44.2 60.5 51.8 70.5 (f1=2N (≦100)	(kN/m^2)	22.0	22.0	22.0	22.0	22.0	N=11 DE= 2/3
Ruf=U-f	中立点~杭先端 ΣLi	m	2.40	2.40	2.50	2.50	2.60	
***	f= Σ (Li•fi)	kN/m	39.6	35.2	38.5	33.0	37.4	
***	Ruf=U•f	kN	49.8	44.2	60.5	51.8	70.5	
土の単位重量 yt kN/m²	《杭の有効重量》							
士の有効重量 Ws' kN 12.3 12.3 15.6 15.6 18.9 中立点より下方 杭の有効重量 W' kN 10.5 10.5 13.2 15.9 中立点より上方 「像育皮持力》		kN/m ²	8.0	8.0	8.0	8.0	8.0	浮力を考慮
杭の有効重量 W kN 12.3 12.3 15.6 15.6 18.9 杭の有効重量 W' kN 10.5 10.5 13.2 13.2 15.9 中立点より上方 (約値支持力) Ru=Ru*Ry+Ruf kN 969.6 1490.3 1497.0 2308.7 2137.5 Ra*=1/5*Ruf kN 969.6 1490.3 1497.0 2308.7 2137.5 Ra=1/3*Ru kN 164.0 511.0 395.0 936.0 702.0 Ra1=MIN[Pa,Ra] kN 164.0 496.0 395.0 769.0 702.0 bh杭体応力度の検討 CASE.1 CASE.2 CASE.3 CASE.4 CASE.5 CASE.5 項目 単位 Dw600 Dw800 Dw750 Dw1000 Dw900 備考 杭頭反力 Po=Ra1* kN 164.0 496.0 395.0 769.0 702.0 鋼材の降伏点 σy N/mm² 315.0 315.0 315.0 315.0 SKK490 杭の經戸 t mm	杭の単位重量 w	kN/m	0.851	0.851	1.069	1.069	1.285	
杭の有効重量 W kN 12.3 12.3 15.6 15.6 18.9 H 杭の有効重量 W' kN 10.5 10.5 13.2 13.2 15.9 中立点より上方 《鉛直支持力》 N 10.5 10.5 13.2 13.2 15.9 中立点より上方 Rul Wi = Rp + Rul kN 969.6 1490.3 1497.0 2308.7 2137.5 Ra'=1/1.5·(Ru' - Ws')+Ws' kN 164.0 511.0 395.0 936.0 702.0 Ra1=MIN[Pa,Ra] kN 164.0 496.0 395.0 769.0 702.0 Ra1=MIN[Pa,Ra] kN 164.0 496.0 395.0 769.0 702.0 Bb/依体応力度の検討 単位 Dw600 Dw800 Dw750 Dw100 Dw900 備考 核順反力 Po=Ra1' kN 164.0 496.0 395.0 769.0 702.0 鋼材の降伏点 oy N/mm² 315.0 315.0 315.0 315.0 315.0 SKK490 軟の運	土の有効重量 Ws'	kN	2.4	2.4	3.9	3.9	5.9	中立点より下方
保留直支持力 Ru=Ru=Rp+Ruf RN 969.6 1490.3 1497.0 2308.7 2137.5 Ra'=1/1.5 · (Ru'-Ws')+Ws'		kN	12.3	12.3	15.6	15.6	18.9	
保留直支持力 Ru=Ru=Rp+Ruf RN 969.6 1490.3 1497.0 2308.7 2137.5 Ra'=1/1.5 · (Ru'-Ws')+Ws'	杭の有効重量 W'	kN	10.5	10.5	13.2	13.2	15.9	中立点より上方
Ru=Ru'=Rp+Ruf								
Ra'=1/1.5・(Ru'-Ws')+Ws' -(Rnf*W) kN 164.0 511.0 395.0 936.0 702.0 Ra=1/3・Ru kN 323.0 496.0 499.0 769.0 712.0 Ra1=MIN[Pa,Ra] kN 164.0 496.0 395.0 769.0 702.0 CASE.1 CASE.2 CASE.3 CASE.4 CASE.5 Oxtoor		kN	969.6	1490.3	1497.0	2308.7	2137.5	
Ra=I/3・Ru kN 323.0 496.0 499.0 769.0 712.0 Ra1=MIN[Pa,Ra] kN 164.0 496.0 395.0 769.0 702	Ra'=1/1.5 (Ru'-Ws')+Ws'							
Ra=I/3・Ru kN 323.0 496.0 499.0 769.0 712.0 Ra1=MIN[Pa,Ra] kN 164.0 496.0 395.0 769.0 702	-(Rnf+W)	kN	164.0	511.0	395.0	936.0	702.0	
CASE.1 CASE.2 CASE.3 CASE.4 CASE.5 φ 400 φ 400 φ 500 φ 600 Φ 600 項目 単位 Dw600 Dw800 Dw750 Dw1000 Dw900 備考 杭頭反力 Po=Ra1' kN 164.0 496.0 395.0 769.0 702.0 702.0 鋼材の降伏点 σ y N/mm² 315.0 315.0 315.0 315.0 315.0 315.0 SKK490 杭の厚さ t mm 9.0 9.0 9.0 9.0 9.0 杭の純断面積 Ap m² 0.0098 0.0098 0.0123 0.0123 0.0148 1.2·(Po+RnFhW') kN 774.2 1172.6 1195.8 1644.6 1708.6 σ y · Ap kN 3087.0 3087.0 3874.5 3874.5 4662.0	Ra=1/3•Ru	kN	323.0	496.0	499.0	769.0	712.0	
CASE.1 CASE.2 CASE.3 CASE.4 CASE.5 check 項目 単位 Dw600 Dw800 Dw750 Dw1000 Dw900 備考 杭頭反力 Po=Ra1' kN 164.0 496.0 395.0 769.0 702.0 鋼材の降伏点 σy N/mm² 315.0 315.0 315.0 315.0 315.0 315.0 SKK490 杭の厚さ t mm 9.0 9.0 9.0 9.0 9.0 9.0 杭の純斯面積 Ap m² 0.0098 0.0098 0.0123 0.0123 0.0148 1.2 (Po+RnFwY) kN 774.2 1172.6 1195.8 1644.6 1708.6 σ y Ap kN 3087.0 3087.0 3874.5 3874.5 4662.0	Ra1=MIN[Pa,Ra]	kN	164.0	496.0	395.0	769.0	702.0	
CASE.1 CASE.2 CASE.3 CASE.4 CASE.5 check 項目 単位 Dw600 Dw800 Dw750 Dw1000 Dw900 備考 杭頭反力 Po=Ra1' kN 164.0 496.0 395.0 769.0 702.0 鋼材の降伏点 σy N/mm² 315.0 315.0 315.0 315.0 315.0 315.0 SKK490 杭の厚さ t mm 9.0 9.0 9.0 9.0 9.0 9.0 杭の純斯面積 Ap m² 0.0098 0.0098 0.0123 0.0123 0.0148 1.2 (Po+RnFwY) kN 774.2 1172.6 1195.8 1644.6 1708.6 σ y Ap kN 3087.0 3087.0 3874.5 3874.5 4662.0		•						
項目 単位 Dw800	b)杭体応力度の検討							
項目 単位 Dw600 Dw800 Dw750 Dw1000 Dw900 備考 杭頭反力 Po=Ra1' kN 164.0 496.0 395.0 769.0 702.0 鋼材の降伏点 σy N/mm² 315.0 315.0 315.0 315.0 315.0 SKK490 杭の厚さ t mm 9.0 9.0 9.0 9.0 9.0 9.0 杭の純斯面積 Ap m² 0.0098 0.0098 0.0123 0.0123 0.0148 1.2 (Po+Rnf+W') kN 774.2 1172.6 1195.8 1644.6 1708.6 σy・Ap kN 3087.0 3087.0 3874.5 3874.5 4662.0			CASE.1	CASE.2	CASE.3	CASE.4	CASE.5	e e
杭頭反力 Po=Ra1' kN 164.0 496.0 395.0 769.0 702.0 鋼材の降伏点 σy N/mm² 315.0 315.0 315.0 315.0 315.0 SKK490 杭の厚さ t mm 9.0 9.0 9.0 9.0 9.0 9.0 杭の純断面積 Ap m² 0.0098 0.0098 0.0123 0.0123 0.0148 1.2 (Po+Rnf+W') kN 774.2 1172.6 1195.8 1644.6 1708.6 σy・Ap kN 3087.0 3087.0 3874.5 3874.5 4662.0			φ 400	φ 400	φ 500	φ 500	φ 600	
鋼材の降伏点 σy N/mm² 315.0 315.0 315.0 315.0 315.0 SKK490 杭の厚さ t mm 9.0 9.0 9.0 9.0 9.0 9.0 杭の純断面積 Ap m² 0.0098 0.0098 0.0123 0.0123 0.0148 1.2 (Po+Rnf+W') kN 774.2 1172.6 1195.8 1644.6 1708.6 σy・Ap kN 3087.0 3087.0 3874.5 3874.5 4662.0	項目	単位	Dw600	Dw800	Dw750	Dw1000	Dw900	備考
杭の厚さ t mm 9.0 9.0 9.0 9.0 9.0 9.0 杭の純断面積 Ap m ² 0.0098 0.0098 0.0123 0.0123 0.0148 1.2·(Po+Rnf+W') kN 774.2 1172.6 1195.8 1644.6 1708.6 σ y・Ap kN 3087.0 3087.0 3874.5 3874.5 4662.0	杭頭反力 Po=Ra1'	kN	164.0	496.0	395.0	769.0	702.0	
杭の純断面積 Ap m² 0.0098 0.0098 0.0123 0.0123 0.0148 1.2·(Po+Rnf+W') kN 774.2 1172.6 1195.8 1644.6 1708.6 σ y·Ap kN 3087.0 3087.0 3874.5 3874.5 4662.0	鋼材の降伏点 σy	N/mm ²	315.0	315.0	315.0	315.0	315.0	SKK490
1.2 · (Po+Rnf+W') kN 774.2 1172.6 1195.8 1644.6 1708.6	杭の厚さ t		9.0	9.0	9.0	9.0	9.0	
σy·Ap kN 3087.0 3087.0 3874.5 3874.5 4662.0	杭の純断面積 Ap	m ²	0.0098	0.0098	0.0123	0.0123	0.0148	
	1.2 · (Po+Rnf+W')	kN	774.2	1172.6	1195.8	1644.6	1708.6	
判定 kN OK OK OK OK	σу∙Ар	kN	3087.0	3087.0	3874.5	3874.5	4662.0	
	判定	kN	OK	OK	OK	OK	OK	

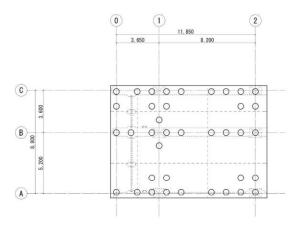
4) 必要杭本数(自家発電機室)

φ 400 · Dw800

杭配置図と必要杭本数の以下に示す。

杭配置 ϕ 400Dw800 杭本数:31本

必要杭本数


杭径 ϕ 400 mm (Dw800mm) 長期鉛直支持力 496.0 kN/本

	その他荷重	Nw (LN)	50%浮力	杭配置用軸力	杭本数	軸力
NL (kN)	Wo (kN)	NL+Wo (kN)	(kN)	(kN)	(本)	(kN/本)
442.4	0.0	442.4	94.3	348.1		348.1
2,563.5	0.0	2,563.5	240.1	2,323.4	5.0	464.7
2,429.9	0.0	2,429.9	206.2	2,223.7	5.0	444.7
573.1	0.0	573.1	138.1	435.0	1.0	435.0
2,007.5	0.0	2,007.5	352.0	1,655.5	4.0	413.9
1,814.0	0.0	1,814.0	302.4	1,511.6	4.0	377.9
474.8	0.0	474.8	69.1	405.7	1.0	405.7
2,455.7	0.0	2,455.7	176.1	2,279.6	5.0	455.9
2,302.4	0.0	2,302.4	151.2	2,151.2	5.0	430.2
15,063.3			1,729.5	13,333.8	31.0	464.7
	442.4 2,563.5 2,429.9 573.1 2,007.5 1,814.0 474.8 2,455.7 2,302.4	442.4 0.0 2,563.5 0.0 2,429.9 0.0 573.1 0.0 2,007.5 0.0 1,814.0 0.0 474.8 0.0 2,455.7 0.0 2,302.4 0.0	442.4 0.0 442.4 2,563.5 0.0 2,563.5 2,429.9 0.0 2,429.9 573.1 0.0 573.1 2,007.5 0.0 2,007.5 1,814.0 0.0 1,814.0 474.8 0.0 474.8 2,455.7 0.0 2,455.7 2,302.4 0.0 2,302.4	442.4 0.0 442.4 94.3 2,563.5 0.0 2,563.5 240.1 2,429.9 0.0 2,429.9 206.2 573.1 0.0 573.1 138.1 2,007.5 0.0 2,007.5 352.0 1,814.0 0.0 1,814.0 302.4 474.8 0.0 474.8 69.1 2,455.7 0.0 2,455.7 176.1 2,302.4 0.0 2,302.4 151.2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

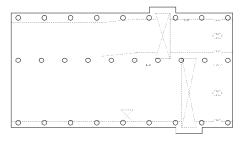
ϕ 500 · Dw750

杭配置図と必要杭本数の以下に示す。

杭配置 ϕ 500Dw750 杭本数:38本

必要杭本数

杭径 ϕ 500 mm (Dw750mm) 長期鉛直支持力 395.0 kN/本


杭支点	長期軸力 NL(kN)	その他荷重 Wo (kN)	Nw NL+Wo (kN)	50%浮力 (kN)	杭配置用軸力 (kN)	杭本数 (本)	軸力 (kN/本)
A-0	442.4	0.0	442.4	94.3	348.1	1.0	348.1
A-1	2,563.5	0.0	2,563.5	240.1	2,323.4	6.0	387.2
A-2	2,429.9	0.0	2,429.9	206.2	2,223.7	6.0	370.6
B-0	573.1	0.0	573.1	138.1	435.0	2.0	217.5
B-1	2,007.5	0.0	2,007.5	352.0	1,655.5	5.0	331.1
B-2	1,814.0	0.0	1,814.0	302.4	1,511.6	4.0	377.9
C-0	474.8	0.0	474.8	69.1	405.7	2.0	202.9
C-1	2,455.7	0.0	2,455.7	176.1	2,279.6	6.0	379.9
C-2	2,302.4	0.0	2,302.4	151.2	2,151.2	6.0	358.5
計	15,063.3			1,729.5	13,333.8	38.0	387.2

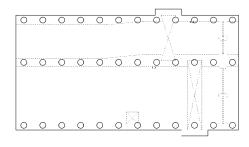
5)必要杭本数 (ポンプゲート)

φ 400 · Dw800

杭配置図と必要杭本数の以下に示す。

杭配置 Ø 400Dw800 杭本数:28本

__必要杭本数__


杭径 ϕ 400 mm (Dw800mm) 長期鉛直支持力 496.0 kN/本

杭支点	長期軸力 NL (kN)	その他荷重 Wo (kN)	Nw NL+Wo (kN)		杭配置用軸力 (kN)	杭本数 (本)	軸力 (kN/本)
建物重量	16,043.1	0.0	16,043.1	2,432.5	13,610.6	28.0	486.1
<u> </u>	16,043.1			2,432.5	13,610.6	28.0	486.1

ϕ 500 · Dw750

杭配置図と必要杭本数の以下に示す。

杭配置 ϕ 500Dw750 杭本数:36本

必要杭本数

杭径 ϕ 500 mm (Dw750mm) 長期鉛直支持力 395.0 kN/本

杭支点	長期軸力 NL (kN)	その他荷重 Wo (kN)	Nw NL+Wo (kN)	50%浮力 (kN)	杭配置用軸力 (kN)	杭本数 (本)	軸力 (kN/本)
建物重量	16,043.1	0.0	16,043.1	2,432.5	13,610.6	36.0	378.1
計	16,043.1			2,432.5	13,610.6	36.0	378.1
5 2 3 1							
8 - 3	-						

6) 杭径の選定

経済比較により最適杭径を決定する。

杭本数

(自家発電機室) (ポンプゲート)

 ϕ 400 · Dw800 : 31 \Rightarrow + 28 \Rightarrow = 59 \Rightarrow ϕ 500 · Dw750 : 38 \Rightarrow + 36 \Rightarrow = 74 \Rightarrow

概算工事費

各杭径における杭1本当たりの工事費を次頁以降に示す。

 ϕ 400 ・ Dw800 : 1,981,100 円/本×59 本=116,884,900 円 \bigcirc ϕ 500 ・ Dw750 : 2,037,200 円/本×74 本=150,752,800 円

以上から、杭基礎形式とする場合は、以下の杭仕様とする。

 $\phi 400 \cdot Dw800 : L = 16.50 m \quad n = 59 \text{ }$

(資料) つばさ杭工法価格根拠(1本当り)

	名 称	摘 要・寸 法	呼称	員 数	単 価	小 計	備考
1	直接工事費						
	400-800	施工費 L=23.0m	本	1.0	1, 509, 600	1, 509, 600	3箇所溶接
	400-800	材料費 =16.5m	本本	1.0	471, 500	471, 500	
<u> </u>							
├─							
	And the late of th						
_	鋼管溶接部品質管理試験		箇所	3. 0			別途
ļ	小計					1, 981, 100	
2	共通仮設費						
	組立解体輸送費		セット	1.0	2, 687, 000	2, 687, 000	
	移動段取換え費		•				
	小計					2, 687, 000	
L							
3	杭頭処理費		本	1.0			別途
ļ	合計					4 000 100	
<u> </u>	端数処理					4, 668, 100	
<u> </u>						-8, 100 4, 660, 000	
\vdash	1781					4, 000, 000	
_		L		L			

	名 称	摘	要・寸	法	呼称	員数	単 価	小 計	備	考
1	直接工事費									
	500-750	施工費		L=23. 0m		1.0	1, 509, 600	1, 509, 600		3箇所溶接
	500-750	材料費		I =16.5m	本	1.0	527, 600	527, 600		
		-								
		l								
	鋼管溶接部品質管理試験				箇所	3.0			別途	**********
	小計							2, 037, 200		
2	共通仮設費									
	組立解体輸送費				tyl	1.0	2, 687, 000	2, 687, 000		
	移動段取換え費				0					
	小計							2, 687, 000		
3	杭頭処理費				本	1.0			別途	
	合計							4, 724, 200		
	端数処理							-4, 200		
	再計							4, 720, 000		
	1	1 -						I		

b) 選定対象工法

本ポンプ場の基礎形式を杭基礎とする場合は回転杭工法とするが、回転杭工法にも 複数工法が存在する。国内で実績のある回転杭工法を以下に示す。

- ・つばさ杭工法
- ・NSエコパイル工法
- ・EAZET 工法

ここで、本ポンプ場は複合構造物であることから、基礎杭は土木、及び建築の設計基準を満足する必要がある。道路橋示方書では、適用可能杭径を鋼管径 ϕ 400~1200 としていることから、建築基準においても杭径 ϕ 400 以上で大臣認定を取得していることが本ポンプ場における工法選定の条件となる。なお、EAZET 工法は国土交通大臣認定の取得が ϕ 114.3~355.6 までであり(表 4-9)、 ϕ 400 以上の大臣認定を有しないことから、本検討の対象外とする。

⑥ 回転杭工法

回転杭工法による杭先端の極限支持力度は、載荷試験結果に基づき設定された表 解 12.4.5 に示す値とする。なお、式 (12.4.3) における杭先端面積は図-解 12.4.6 における先端羽根の投影面積 A_u とする。

表-解 12.4.5 回転杭工法による杭先端の極限支持力度 q_d

地盤種類	羽根外径/杭径	杭先端の極限支持力度 q_d (kN/m^2)
砂層	1.5 倍	120 N (≤6,000)
砂層	2.0 倍	100 N (≦5,000)
IIV II 소문	1.5 倍	130 N (≤6,500)
砂れき層	2.0 倍	115 N (≦5,750)

ただし、Nは杭先端地盤における標準貫入試験のN値

表-解 12.4.5 に示す値は、羽根外径が杭径の 1.5 倍又は 2.0 倍、先端閉塞タイプ 又は羽根内径/杭径比 $(D_{wl}/D_p) \le 1/2$ の開口タイプ、羽根外周の切欠き長さの合計 が全周の 1/8 以下の羽根形状を有する回転杭工法を対象としており、鋼管径が 400mm から 1,200mm の場合で適用性が検証されている。この際、支持層への杭 先端の根入れ深さは杭径 D_p 程度以上とする。

出典:「道路橋示方書·同解説 IV下部構造編」(日本道路協会)

表 4-9 EAZET 杭材仕様

	端羽根部	杭先站		体部	杭本	
材質	厚さ ts(mm)	羽根部径 Dw (mm)	SEAH590	STK490	STK400	杭本体部径 Do(mm)
				厚さ t(mm)		DO (IIIII)
	12	250	-		6.0	114.3
	16	300				30000000
	16	300	-	6.6	6.6	139.8
	19	350		15,040,000	SOMPARIES	5.5.50.50
	16	350	Ļ			
	19	450		7.1	7.1	165. 2
	22	500 ※2				
	19	400	L			
	22	500		7.0		
	22	570 ※2				
	22	470				
	22	550	⟨8, 2⟩	8. 2 12. 7		216.3
SM490	28	600	(8. 2)			210.3
Sill480A	25	650 ※2	Ī			
	22	580				
	28	580	Ī	8. 0 9. 3 12. 7		
	28	650	<8. 0>			
	28	700	<12.7>			267. 4
	28	750 ※2	X12.12	12.7		13560200 1 VV
	28	800 ※1	Ī			
	32	800 ※2				
	22	600		20002		
f	28	700	İ	7. 9 10. 3	10.3	318. 5
	28	750	1	<12.7>		
	28	700		< 9.5>	No. of the	
	32	800	<12. 7>	<12.7>	9.5	355. 6

出典: EAZET 設計施工標準

c) 回転杭工法の選定

つばさ杭、及び NS エコパイルの両工法について、杭1本当たりの施工費を比較した結果、つばさ杭が安価となった。このため、本ポンプ場の基礎形式を杭基礎とする場合はつばさ杭工法を採用する。施工費根拠(見積書)を次頁以降に添付する。

・つばさ杭工法 : 1,981,100 円 ← 採用 ・NS エコパイル工法 : 2,229,400 円

(資料 1) つばさ杭工法価格根拠

見積書

令和 2年 1月 10日

舞鶴市長様

大阪市西区京町堀一丁目7番11号 株式会社 ジオダイナミック 大阪支店 取籍役 加賀山 誠也

見積金額: 1,981,100 円也

但し 静渓ポンプゲート設置工事 小径つばさ杭工法(CHR機) 杭1本当り施工費(材・工)

上記金額をもってお請けいたしますのでご用命顧い上げます。

御支給品	別途工事	支払条件	特記事項
別途条件書通り	別途条件書通り	協議による	消費税は見積金額に含んでおりません。

1. 見積り条件

- (1) 見積り範囲 小径つばさ杭施工費(打設費、材料費、組立解体費)

② バリケード、標識等の安全設備

① 事務所、作業員休憩所 (3) 別途工事

② 道路·場内保安要員

① 労災保険、各種工事保険

③ 作業ヤードの整地、造成、地盤改良 ⑤ 鋼管事前溶接試験、品質確認試験

④ 測量、杭芯出し ⑥ 杭頭処理、杭頭金具類の取付け(材料費は鋼管費に含みます)

- ② 財百年期別核別級、即其性認知版 (4) 特記事項 ① 御指示の関面に基づき見積もりましたが、条件等に租達が生した場合は別途協議願います。 ② 機械級人(杭打ち機: 健床トレーラー、機材: 10トラック)は支障の無いものとします。また、施工数量に増減が生じた場合は、別途協議願います。 ③ 作業治療は平坦かつ水平に整地されているものとし、重機作業に支降無いものとします。また、上空制限は無いものと数します。 ④ 支持層が模質で質入困難な場合は、つばさ杭管理指標による打ち止めとします。また、中間層の五石等でプレオーガが必要な場合は

 - ⑤ 空場節埋め戻し土が不足する場合は御支給願います。⑥ 責社の都合により手待ちが生じた場合は、その間の機械損料及び労務費の補償をお願いします。
 - ⑦ 作業時間は 8:00~18:00 を標準とします。 ⑧ 本見積書には消費税等は含んでおりません。
 - ⑨ 見積有効期限は、1ヶ月といたします。
- 2. 数量

記号	杭径	つばさ径・厚 (mm)	貫入長	杭長	空堀長	本数	鋼管重量		溶接箇所		
	(mm)		(m)	(m)	(m)	(本)	t/本	t	カ所/本	カ所	
400-800	400	800-28	23. 0	16. 5	6.5	1	1.577	1.577	3		
- 4											
	-	+	-			_			-		
計			23.0	16.5		1		1.577			

3. 工事工程

施工日数	1 (本)÷	0.50	(本/日)=	2	(日)
		工事日数			
	組立	1	(日)/1セット		
つばさ杭工	つばさ施工	2	(日)/1セット		
全体工程	中間移動	0	(日)/1セット		
	解体	1	(日)/1セット	休日比率	
	雨天休日	1	(日)/1セット	30.0	96
	81	5	(H)/14vk	0.2	4日

4. 小径つばさ杭工事費内訳

	名 称	摘要	・寸 法	呼称	員 数	単 価	小 計	備	考
1	直接工事費								
	400-800	施工費	L=23. 0m	本	1.0	1, 509, 600	1,509,600		3箇所溶接
_	400-800	材料費	I =16.5m	本	1.0	471, 500	471, 500		
	鋼管溶接部品質管理試験			箇所	3. 0			別途	
	小計			面別	3.0		1, 981, 100		
2	共通仮設費								
	組立解体輸送費			セット	1.0	2, 668, 000	2, 668, 000		
	移動段取換え費								
_	小計						2, 668, 000		
3	杭頭処理費			本	1.0			別途	
	合計	1					4, 649, 100		
	端数処理						-9, 100		
	再計						4, 640, 000		

1-1号内訳表 低空頭つばさ杭1本当り打設費

名 称	摘 要・寸 法	呼称	員 数	単価	小 計	備考
世話役		人	1.96	22, 700	44, 492	
とびエ		人	3. 92	23, 400	91, 728	
溶接工		人	1. 96	24, 700	48, 412	
低空頭杭打機運転	CHR機	日	1.96	426, 300	835, 548	
バックホウ運転		日	1.96	50, 300	98, 588	
4.9t吊りクレーン運転		日	1. 96	51, 810	101, 547	
発電機・半自動溶接機運転		日	1. 96	28, 390	55, 644	
プレボーリングエ		m		43, 400	0	
諸雜費	上記計の18% (宿泊費含む)	式	1.0		233, 641	
	1本当り施工費	ž.			1,509,600 (円/本)

(資料 2) NS エコパイル工法価格根拠

静渓ポンプゲート設置工事 1本当り材工費

第1号	回転圧入鋼管杭(杭)	克:16.5m、压入	.長:23m)1オ	4当り内	訳書			
名 称	規	格	単位	数	並	単価	金 額	摘要
土木一般世話役					2.3	22,700	52,210	1×(Tc/60×1/T)
とびエ			"		2.3	23,400	53,820	1 × (Tc/60 × 1/T)
持殊作業員			п		2.3	20,200	46,460	1×(Tc/60×1/T)
溶接工			n		2.3	24,700	56,810	1 × (T _G /60 × 1/T)
鋼管回転圧入機運転	DHJ-45		B		2.3	481,030	1,106,369	第1-1号 単価表
ラフテレーンクレーン運転	25t吊		"		2.3	50,000	115,000	賃料
パックホウ運転	0.2m3		"		2.3	21,400	49,220	第1-2号 単価表
諸雜費			式		1		145,811	(労務費+材料+機械損料)×雑費率:7%
ät							1,625,700	

静渓ポンプゲート設置工事 1本当り材工費

第2号	回転圧入鋼管杭(杭長:16.5m)1本当り	与訳書						
名 称	規格	単位	数	ń	単 価	金額	摘	要
回転圧入鋼管杭	上杭 SKK490 φ400×9t×4000	本		1.0	80,400	80,400	第1-1号 単価表	
n .	中杭 SKK490	"		2.0	79,200	158.400	第1-2号 単価表	
п	先端羽根付下杭 SKK490/SCW480 φ 400×9t×4500	"		1.0	364,900	364,900	第1-3号 単価表	
â†						603,700	(¥36,588円/m)	

4.3.5 地盤改良工法の検討

a) 地盤改良工法の選定

地盤改良工法の分類を表 4-10 に示す。本ポンプ場においては、<u>掘削底面の安定性確保のため、地盤強度を増加させることが地盤改良の1つの目的である。このため、地盤改良体と山留壁と密着させる必要がある。なお、地盤改良は山留壁が打ち込まれた状態での施工となり、機械撹拌工法ではブレードが支障となることから、高圧噴射工法を採用する。</u>

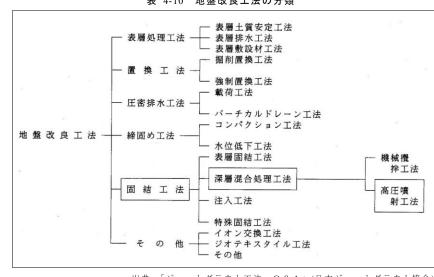


表 4-10 地盤改良工法の分類

出典:「ジェットグラウト工法 Q&A」(日本ジェットグラウト協会)

表 4-11 及び表 4-12 に各社実績のある高圧噴射工法を示す。本ポンプ場は、<u>港湾内での高圧噴射工を行うことから、排泥はバキューム車による処分が必要となる。このため、排泥処分費を考慮した経済比較を行った結果、経済性に優れる N-Jet 工法を採用する。</u>

表 4-11 高圧噴射工法比較表 (1/2)

工法	N-Jet工法	SUPERJET工法	V-JET工法	OPTジェット工法	Megaジェット工法	コラムジェットグラウト工法
NETIS	(N1ジェット工法) 申請中	(SUPERJET35) KK-980026-VR	(V2) KT-120047-A(掲載終了)	(OPT-1) KTK-100011-VE	(M2) KTK-160023-A	(CJG)
協会名/主要会社	1,000	KK-980026-VK SUPERJET研究会/ケミカルグラウト	V-JET協会/三信建設工業	OPTジェット研究会/ライト工業	ディトコード ライト工業	- 多数
协云名/土要云红	N-JetT法協会/日特建設	● 二重管 (2/ズル) ●噴射圧力: 34.5MPa ●噴射量: 370 ℓ / 分 ●引上速度: 9分/m ・強力なエネルギーを持つ超高圧固化材スラリー噴	● 二重管 (2ノズル) ●噴射圧力: 35MPa ●噴射量: 360 ℓ / 分 ●引上速度: 9分/ m ・二重管ロッドから空気を伴った超高圧硬化材液を (協方向に段差対向で噴射することで地盤を切削する。 ・段差対向噴射機構を持つ特殊専用モニターによ	●三重管 (2ノズル) ●噴射圧力: 40MPa ●噴射量 : 300ℓ/分(硬化材) 50ℓ/分(水) ●引上速度: 9分/m	●二重管 (2ノズル) ●噴射圧力: 40MPa ●噴射圧力: 40MPa ●噴射量 : 290 ℓ / 分 (硬化材) ●引上速度: 11分/m ・超高圧をすいの持ち運動エネルギーによって、地 盤の骨格構造を破壊し、その破壊とれた土粒子の 大部分を地上に排出すると同時に、残留した土粒 子と硬化材が配合される収集体を造成する。 ・上下の二段シェットで、超高圧硬化材増減とれ に沿った空気噴流体によって破壊効果を発揮す	●三重管 (2ノズル) ●噴射圧力: 5MPa、40MPa ●噴射量: 180 ℓ / 分 (硬化材) 70 ℓ / 分 (水) ●引上速度: 16分/m ・三重管ロッドから空気を伴った超高圧水を横方向に噴射することで地盤を切削するともに硬化材を
工法の特長	第五百章 (1945年) [1] (1947年) [1] (1947年) (1947年) (1947年)	第元記	スタイムが分 - 田田弘祖 ・ 田田弘祖 ・ スタイム ・ 一定電の子 ・ 田田公祖 ・ 日本の子	LEDION CONTROL OF THE PARTY OF	の	プライムピット ガイドホール φ140mm以上 正確全数0.7MPa 超過往水40MPa
地盤切削機構	(超高圧硬化材+エア) ×4ノズル ※2ノズル×2方向	(超高圧硬化材+エア)×2ノズル ※水平対向2ノズル	(超高圧硬化材+エア)×2ノズル ※段差対抗2ノズル	超高圧水+(超高圧硬化材+エア) ※各々1ノズル	(超高圧硬化材+エア) ×2ノズル ※上下段2ノズル	(超高圧水+エア) +超高圧硬化材 ※各々1ノズル
適応地盤	砂質土: N≤50 (200) 粘性土: N≤ 3 (9)	砂質土: N≤50 (200) 粘性土: N≤ 3 (9)	砂質土: N≤50 (200) 粘性土: N≤ 3 (9)	砂質土: N≤30 (200) 粘性土: c≤20 (150)	砂質土: N≤30 (100) 粘性土: N≤ 3 (7)	砂質土: N≤30 (200) 粘性土: N≤ 3 (9)
改良径	φ3500 (φ2300)	φ3500 (φ2400)	φ3500 (φ2400)	φ3500 (φ2200)	φ3500 (φ3000)	φ2000 (φ1200)
設計基準強度	<一軸圧縮強さ: qu> 砂質土: 3.0 MN/m² 粘性土: 1.0 MN/m² <粘着力: c> 砂質土: 0.5~0.75 MN/m² 粘性土: 0.3~0.50 MN/m² <付着力: f=1/3c MN/m²> 砂質土: 0.16~0.25 MN/m² 粘性土: 0.10~0.16 MN/m² <引張強度: ot=2/3c MN/m²> 砂質土: 0.33~0.50 MN/m² 粘性土: 0.20~0.33 MN/m²	<一軸圧縮強さ: qu> 砂質土: 3.0 MN/m² 粘性土: 1.0 MN/m² <粘着力: c> 砂質土: 0.5 MN/m² 粘性土: 0.3 MN/m² <付着力: f=1/3c MN/m²> 砂質土: 0.16 MN/m² <付着力: f=1/3c MN/m² ri く付着力: 5 (10 MN/m² 水性土: 0.10 MN/m² <!-- ri--> く引張強度: ot=2/3c MN/m²> 砂質土: 0.33 MN/m² 粘性土: 0.20 MN/m² 	<一軸圧縮強さ: qu> 砂質土: 3.0 MN/m² 粘柱土: 1.0 MN/m² <粘着力: c> 砂質土: 0.5 MN/m² 粘性土: 0.3 MN/m² <付着力: f=1/3c MN/m²> 砂質土: 0.16 MN/m² <付着力: f=1/3c MN/m² ri 砂質土: 0.10 MN/m² <!-- ri--> ペ引張強度: ot=2/3c MN/m² 松質土: 0.33 MN/m² 林生土: 0.20 MN/m² 	<一軸圧縮強さ: qu> 砂質土: 2.0 MN/m² 粘性土: 1.0 MN/m² <粘着力: c> 砂質土: 1.0 MN/m² 粘性土: 0.5 MN/m² <付着力: f=1/5c MN/m²> 砂質土: 0.20 MN/m² 料性土: 0.10 MN/m² <引張強度: ot=1/2c MN/m²> 砂質土: 0.50 MN/m² 粘性土: 0.25 MN/m²	<一軸圧縮強さ: qu> 砂質土: 3.0 MN/m² 粘性土: 1.0 MN/m² <粘着力: c> 砂質土: 0.5 MN/m² 粘性土: 0.3 MN/m² <付着力: f=1/3c MN/m² 砂質土: 0.16 MN/m² 砂質土: 0.16 MN/m² <引張強度: ot=2/3c MN/m²> 砂質土: 0.33 MN/m² 粘性土: 0.20 MN/m²	<一軸圧縮強さ: qu> 砂質土: 3.0 MN/m² 粘性土: 1.0 MN/m² <粘着力: c> 砂質土: 0.5 MN/m² 粘性土: 0.3 MN/m² <付着力: f=1/3c MN/m²> 砂質土: 0.16 MN/m² 砂質土: 0.10 MN/m² <引張強度: ot=2/3c MN/m²> 砂質土: 0.33 MN/m² 粘性土: 0.20 MN/m²
使用材料	セメント+混和剤	専用硬化材	専用硬化材	セメント+混和剤	セメント+混和剤	セメント+混和剤
名称	●N-S (標準タイプ) ●N-L (能強度タイプ) ●N-C (高粘着力粘性土タイプ)	●SJ1号(砂質士) ●SJ2号(粘性土) ●SJ4号(陽植土)	●VJ-H - <u>標準仕様</u> 、液状化対策仕様 - 低弛度仕様 - 低弛度七様 - 高流動9-4-7	●OP1号 (標準) ●OP2号 (強度抑制)	●Megaジェット専用硬化材 ・標準用 ・中強度 ・低強度	●3G-1号(標準タイプ) ●3G-2号(中強度タイプ) ●3G-3号(低強度タイプ) ●3G-3号(原植土タイプ) ●1G-5号(高流動性タイプ)
配合表 (1m³) ※上記、アンダーライン	- 普通ポルトランドセメント : 760kg (高炉セメントB種) - NJ混和剤 L : 3.5kg ・水 : 756 ℓ (748 ℓ)	·SJ-1号H型 : 660kg ·水 : 781ℓ	·VJ-H固化材 : 720kg ·水 : 763ℓ	・普通ボルトランドセメント : 760kg (高炉セメント日種) ・混和剤(S型) : 10kg ・水 : 750ℓ (741ℓ)	- 普通ポルトランドセメント : 760kg (高炉セメントB種) - 混和剤(S型) : 10kg - 水 : 750ℓ (741ℓ)	・普通ボルトランドセメント : 760kg (高炉セメントB種) ・混和剤(A) : 12kg ・水 : 750 € (740 €)
削孔径	ケーシング削孔 (φ140mm)	ケーシング削孔 (φ140mm)	ケーシング削孔(φ140mm)・直接削孔	ケーシング削孔(φ140mm)・直接削孔	ケーシング削孔(φ140mm)・直接削孔	ケーシング削孔(φ140mm)
モニター径/ロッド径	φ110mm/φ90mm	φ90mm/φ90mm	φ114mm/φ90mm	φ90mm/φ90mm	-	φ90mm/φ90mm
標準適用深度	標準30mまで	標準30mまで	標準30mまで	標準30mまで	標準30mまで	標準30mまで

表 4-12 高圧噴射工法比較表 (2/2)

I	法	N-Jet工法 (N1ジェット工法)	SUPERJET工法 (SUPERJET35)	V-JET工法 (V2)	OPTジェット工法 (OPT-1)	Megaジェット工法 (M2)	コラムジェットグラウト工法 (CJG)
工事費、工期比較(官積	モデル 条件 土質: N値:	●対象面積: A=10.0×5.0=50.0m ² ●削孔長: 15.0m ●改良長: 5.0m ●改良長: 5.0m ●改良長: 9.0500 ●n=8本 ●対象土質: 砂質土 N=5 ●設計基準強度: 3.0MN/m ² ●使用材料: N-S	●対象面積: A=10.0×5.0=50.0m² ●例孔長: 15.0m ●改良長: 5.0m ●改良長: 93500 ●n=8本 ●対象土質: 砂質土 N=5 ●設計基準強度: 3.0MN/m² ●使用材料: SJ-1号 10000	●対象面積: A=10.0×5.0=50.0m² ●削孔長: 15.0m ●改良長: 5.0m ●改良長: 93500 ●n=8本 ●対象土質: 砂質土 N=5 ●設計基準速度: 3.0MN/m² ●使用材料: VJ-H	●対象面積: A=10.0×5.0=50.0m ² ●削孔長: 15.0m ●改良長: 5.0m ●改良長: 93500 ●n=8本 ●対象土質: 砂質土 N=5 ●設計基準強度: 2.0MN/m ² ●使用材料: OPT1号	対象面積: A=10.0×5.0=50.0m² ・削机長: 15.0m ・改良長: 5.0m ・改良長: 5.0m ・改良経: 03500 ・の=8本 ・対象土質: 砂質土 N=5 ・設計基準強度: 3.0MN/m² ・使用材料: Megaジェット専用硬化材	●対象面積: A=10.0×5.0=50.0m ² ●削孔長: 15.0m ●改良長: 5.0m ●改良長: 50.0m ●改良程: 02000 ●n=24本 ●対象土質: 砂質士 N=5 ●設計基準強度: 3.0MN/m ² ●使用材料: JG-1号 10000
\(\) \(\)	工事費	12,500千円 ※排泥15千円/m³として	13,500千円 ※排泥15千円/m³として	14,800千円(1,850千円/本) ※排泥15千円/m³として	13,000千円 ※排泥15千円/m³として	14,200千円 ※排泥15千円/m³として	26,600千円 ※排泥15千円/m³として
2	比率		108%	118%	104%	114%	213%
	排泥量	180.4m³	194.3m³	200.0m ³	196.6m³	301.3m ³	555.2m ³
	工期	12日(内、造成4日)	11日(内、造成3日)	10日(内、造成4日)	11日(内、造成3日)	11日(内、造成3日)	33日(内、造成10日)
	特許	2.5円/ℓ (噴射量)	3 (2) (2) (2)	3 (0.00.0.00.00.00.00.00.00.00.00.00.00.00	500円/m³(改良対象土量)	1.0円/ℓ (噴射量)	3,000円/m(改良長)
	1751	794円/m³ (改良体の体積に換算)	1,500円/m ³ (改良体の体積)	800円/m ³ (改良体の体積)	325円/m³ (改良体の体積に換算)	352円/m³ (改良体の体積に換算)	955/m³ (改良体の体積に換算)

b) 高圧噴射改良径の検討

高圧噴射改良は、改良体の径によって必要な改良体本数が異なるため、最適な改良体径を検討 する。N-Jet 工法では、改良体径の最大径がφ3500 であることから、φ3500 と、1 ランク小型の φ3000 について経済比較を行った。この結果、改良体径をφ3500 とし、改良体本数を低減するこ とが、経済性で有利となることが確認された。このため、改良体径はφ3500を採用する。

(資料1)工事費根拠(改良体φ3500)

御見積書

見積No. 西曆 年

日特建設株式会社

舞鶴市上下水道部下水道整備課 殿

次のとおり御見積致します。

御見積金額 ¥ 2 0 0 0 3 6 1 5 6

担当者 大阪支店 谷澤 雅治

印

 〒541-0048
 大阪市中央区瓦町2丁目2番7号 山鍋染エビル10階

 TEL 06-6232-2109

 FAX 06-6232-2108

本見積金額には消費税を 含んでおりません。

N1ジェット工法 (ケーシング削孔) 工 事 名 雨水ポンプ場実施設計

御見積条件

N1ジェット工法 (ケーシング削 工事名 孔) 雨水ポンプ場実施設計

N1ジェットエ 内訳書

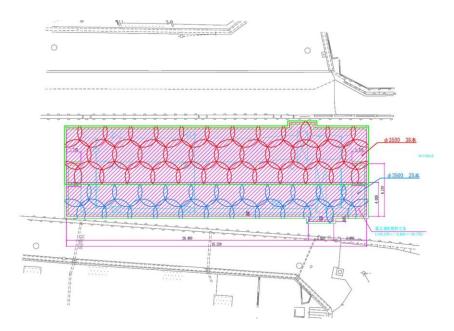
名 称	仕様	単位	数量	単 価	金 額	備	考
直接工事費							
材料費	N-S (標準)	m ³	3, 167. 64	10,056	31, 852, 204	代価表 No.	1
労務費	削孔工	B	58. 00	59, 400	3, 445, 200	代価表 No.	2
労務費	造成工	月	49.00	121, 900	5, 973, 100	代価表 No.	3
機械損料費		式	1.00	36, 625, 949	36, 625, 949	代価表 No.	4
消耗材料費		式	1.00	41, 874, 406	41, 874, 406	代価表 No.	5
排泥液処理費		m3	4, 366. 00	15, 000	65, 490, 000	代価表 No.	6
動力・用水費		式	1.00	5, 708, 397	5, 708, 397	代価表 No.	7
機械据付撤去費		式	1.00	1, 147, 800	1, 147, 800	代価表 No.	8
特許使用料		m ³	3, 167. 64	2,500	7, 919, 100		
小 計					200, 036, 156		
合 計					200, 036, 156		

日特建設株式会社

P-1

N1ジェット工法施工数量表

工事件名: NJジェット工法(ケーシング制孔) 西水ポンプ場実施設計


									1 3	1 15	y													全体	2						
コブ	有效径 (mm)			ACT Co					(A)			遊成長 (m)	(m) #		吐出量 (m ² /分)	碳化材量 (m ³)	本数 (本)				L長70)			i ii	ak !	発表が		造成長 (m)	プレジェット集	硬化材量 (m²)	80 954
		**	10.45 ±	81	t±	B#1		MM.	砂田土				160					28	MB±	61	R ±	ner.		na±	ex:	1.80			(m)		
			WH.T.	N£50		OWT		1613.L	OAL	OWT						2		M.M.	MOL	N≨50		OMY	"	601	ORL	out					
Α	3,500	2.30	16,17	2.20	0.00	0.00	20.67	14.17	2.20	0.00	16,37	16.220	0.000	8	0.36	50.28	38	87.40	614.46	83.60	0.00	0.00	785.46	538.46	83.60	0.00	622.06	616.360	0.00	1,910.64	N-5
В	3,500	2.30	16,17	2.20	0.00	0.00	20.67	14,17	2.20	0.00	16.37	16.220	0.000	8	0.36	50.28	25	57.50	404.25	55.00	0.00	0.00	516.75	354.25	55.00	0.00	409.25	405.500	0.00	1,257.00	N-s
_		_			-							_										-		-	_						-
																		\vdash													
B 21														-					1,018.71	138.50	0.00		1,302.21					1.021.860		3.167.64	

※荊孔長には余韶りを含む。

平均數量 有効程	_		Wi3	1.長				ëk i	R.K.		造成長 (m)		引上通度 (分/m)		
(mm)		siet ±		E±.	een.				180			(m)			
	2.00	MHL	N 550	50 <n< th=""><th>D-M-L</th><th></th><th>16.3.2</th><th>OWT</th><th>0.4T</th><th></th><th></th><th></th><th></th><th></th><th></th></n<>	D-M-L		16.3.2	OWT	0.4T						
3,500	2.30	16.17	2.20	0.00	0.00	20.67	14.17	2.20	0.00	16.37	16.220	0.000	8	0.36	50.28

h'= h ー 0.15 m 硬化材使用量の計算式

$\{h' \times tx + (ty+tx) \times e\} \times qe \times$	(1+B)	
ta: 遊成噴射時間 ty: 改良下場噴射時間 ta: 改良上隔噴射時間	1.0 57	s:改良階層数 qc: 研化材の単位填料量 β: 恒矢係数

(資料 2) 工事費根拠 (改良体φ3000)

御見積書

見積No. 西 曆 年 月 日

舞鶴市上下水道部下水道整備課 殿

日 特 建 設 株 式 会 社 大阪支店

八版人口

常務執行役員支店長 浅井 勝

次のとおり御見積致します。

担当者 大阪支店 谷澤 雅治

〒541-0048

大阪市中央区瓦町2丁目2番7号 山場染エビル10階 TEL 06-6232-2109 FAX 06-6232-2108

本見積金額には消費税を 含んでおりません。

N1ジェット工法 (ケーシング削孔) 事 名雨水ポンプ場実施設計

御見積条件

N1ジェット工法 (ケーシング削 工事名 孔) 雨水ポンプ場実施設計

N1ジェットエ 内訳書

金 231,560,000円

名 称	仕様	単位	数 量	単 価	金 額	備	考
接工事費							
材料費	N-S (標準)	m ³	3, 674. 81	10,056	36, 952, 052	代価表 No.	1
労務費	削孔工	E	67.00	59, 400	3, 979, 800	代価表 No.	2
労務費	造成工	日	57. 00	121, 900	6, 948, 300	代価表 No.	3
機械損料費		式	1.00	42, 164, 705	42, 164, 705	代価表 No.	4
消耗材料費		式	1.00	48, 576, 987	48, 576, 987	代価表 No.	5
排泥液処理費		m3	5, 065. 20	15, 000	75, 978, 000	代価表 No.	6
動力・用水費		式	1.00	6, 625, 479	6, 625, 479	代価表 No.	7
機械据付撤去費		式	1.00	1, 147, 800	1, 147, 800	代価表 No.	8
特許使用料		m ³	3, 674. 81	2, 500	9, 187, 025		
小 計					231, 560, 148		
端数調整		式	1.00		-148		
		+					
合 計		+			231, 560, 000		

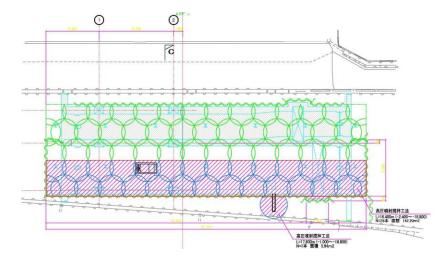
日特建設株式会社

P-1

N1ジェット工法施工数量表

工事件名: N1ジェット工法(ケーシング利孔) 指木ポンプ婦実施設計

										1.4	1 尚	y													全体	2						
タイプ	有效径 (mm)			,	利孔: (m)					(A)) ()		遊成長 (m)	(m) A		杜出量 (m ³ /分)	硬化材量 (m ²)	本数 (本)			Alia G					Bk 8	9.長 n)		遊成長 (m)	プレジョッ ト長	硬化材量 (m³)	***
		26	4111		og:		are ±			n#±		11		(m)					28	B-0.0	-01	E±.	021		N21	BES	68±			(m)		
			40.2	NS	90 5	0 CN			400.2	on_										W.S.L.	NS:50	50-CN	Out		403.2	ORL	- OWL					
Α	3,000	2.30	16.17	2.	20	0.00	0.00	20.67	14.17	2.20	0.00	16,37	16.220	0.000	8	0.36	50.28	43	98.90	695.31	94.60	0.00	0.00	888.81	609.31	94.60	0.00	703.91	697,460	0.00	2,162.04	N-S
В	3,000	2.30	16.17	2.	20	0.00	0.00	20.67	14.17	2.20	0.00	16.37	16.220	0.000	8	0.36	50.28	29	66.70	468.93	63.80	0.00	0.00	599.43	410.93	63.80	0.00	474.73	470,380	0.00	1,458.12	N-5
c	3,000	2.30	16,17	2	20	0.00	0.00	20.67	15.60	2.20	0.00	17.80	17.650	0.000	8	0.36	54.65	1	2.30	16.17	2.20	0.00	0.00	20.67	15.60	2.20	0.00	17.80	17.650	0.00	54.65	N-S
					+																											
_		_			+	-	_	_					_																			
					\pm																											
会計																		73	167.90	1,180.41	160.60	0.00	0.00	1,506.91	1,035.84	160.60	0.00	1,196.44	1,185,490	0.00	3,674.81	


平均数量						
	削孔長	是良恕	造成長	ル	引上速度	8
有効径	(m)	(m)	(m)	W W	(52/m)	6

有効性				L長 n)				1000	9.長 n)				引上速度 (分/m)		
(mm)		報性土	101	E.E.					の様土			(4)			
1	va.	お行工	NS10	50 <n< th=""><th>OWT</th><th></th><th>#c11.2</th><th>OWI</th><th>947</th><th></th><th></th><th></th><th></th><th></th><th></th></n<>	OWT		#c11.2	OWI	947						
3,000	2.30	16.17	2.20	0.00	0.00	20.67	14.19	2.20	0.00	16.39	16.240	0.000	8	0.36	50.35

NIジェット工法における造成長の考え方 造成長= 改良長ーノズル関長 h'= h - 0.15 m 硬化材使用量の計算式

 $G = \{h' \times tx + (ty+tx) \times s\} \times q_0 \times (1+\beta)$

4.3.6 基礎形式の比較

杭基礎形式、地盤改良を併用した直接基礎形式について、施工性、経済性等により比較した結 果を表 4-13 に示す。なお、各案で仮設構台の規模が異なることから、経済比較を行うにあたって は仮設構台の構築費用を含めることとした。

この結果、両案において経済性はほぼ同等となったが、杭基礎形式に比べて、仮設構台の規模 を小さく、施工期間を短縮できることから、地盤改良を併用した直接基礎形式を採用する。

表 4-13 基礎形式の比較

	杭基礎形式	地盤改良併用直接基礎形式
概要図		
構台	主 桁: H-700×300×13×24	主 桁:H-594×302×14×23
仕様	受 桁: H-700×300×13×24	受 桁: H-594×302×14×23
	構台杭: H-350	構台杭: H-350
施工性	・施工重機は小型機を用いることが可能であるが、杭直上に施工機を寄り付かせるため、仮設構台をほぼ全面に設置しなければならない。 ・杭施工機の重量が地盤改良案よりも大きく、より剛性の高い桁材が必要とある。	・仮設構台は水路幅の概ね 1/2 まで架設することで施工が可能である。 ・地盤改良施工期間:3.5 ヶ月
	・杭施工期間:9ヶ月	
	(表層地盤改良を含む)	
admirate fol		0
環境性 (施工時)	・回転杭、構台杭の杭材を建て込むため、周辺に圧迫感を与える恐れがある。 ・構台規模が大きく、騒音や振動の発生期間が長くなる。	・構台杭を建て込むため、周辺に圧迫感を与える恐れがある。・構台規模が小さいため、構台構築時の騒音等は杭基礎案よりも低減できる。
	Δ	0
経済性	杭基礎 : 183,130 千円 (ヒービング対策の地盤改良を含む) 仮設構台: 64,741 千円 合 計 : 247,871 千円	地盤改良: 218,000 千円 (排泥処理費の割増を含む) 仮設構台: 25,023 千円 合 計 : 243,023 千円
	△ (102%)	O (100%)
評価	経済性に大きな差はないが、施工期間が 半年長く、環境性で劣る。	経済性に大きな差はないが、施工期間が 半年短く、杭基礎案に比べれば環境性は 優れる。
	Δ	0

a) 杭基礎工事費、施工日数

杭工事費

施工費: φ400 · Dw800 n = 59 本 116,890,000 円

施工機械の搬入・解体: 2,687,000 円×2 回= 5,380,000 円 (2 回乗り込み)

杭頭補強工: 20,000/カ所×59カ所 = 1,180,000円

高圧噴射工法工事費

杭基礎の場合は、鋼矢板の変位抑制と掘削時のトラフィカビリティー確保のための高圧噴射工法が必要になる。

近年、杭近傍の高圧噴射工法の施工が原因で PHC の破損事例が報告されている。 本工事の場合は鋼管杭であるため、破損のリスクは低いと言えるが、地盤内の圧 力上昇に伴う鋼管の変形のリスクは否定できない。

いずれにせよ、先行打設された杭を考慮して 150 本もの改良コラムを配置する 必要があり、地盤内の圧力上昇を低減できる工法を採用すべきといえる。ここで は、噴射圧力が比較的小さい JSG 工法を選定するものとする。

改良コラムの配置図を図 2-6 に示す。また、概算工事費を次頁以降に示す。

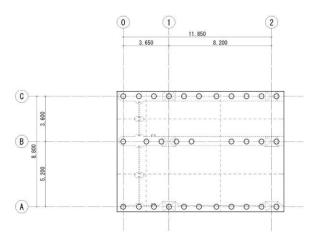
施工費: φ 2000 n = 150 本 59,680,000 円

全工事費

杭基礎工法全工事費: 183,130,000円

施工日数

施工日数の算定根拠を次頁以降に示す。


杭工事日数:117日+60日=177日 高圧噴射工法日数:45+35=80日

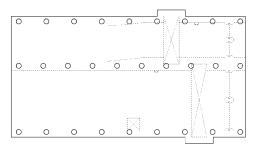
杭基礎工法全日数:257日→(≒9ヶ月)

φ 400 · Dw800

杭配置図と必要杭本数の以下に示す。

杭配置 φ 400Dw800 杭本数:31本

必要杭本数


杭径 ϕ 400 mm (Dw800mm) 長期鉛直支持力 496.0 kN/本

杭支点	長期軸力	その他荷重	Nw	50%浮力	杭配置用軸力	杭本数	軸力
机又尽	NL (kN)	Wo (kN)	NL+Wo (kN)	(kN)	(kN)	(本)	(kN/本)
A-0	442.4	0.0	442.4	94.3	348.1	1.0	348.1
A-1	2,563.5	0.0	2,563.5	240.1	2,323.4	5.0	464.7
A-2	2,429.9	0.0	2,429.9	206.2	2,223.7	5.0	444.7
B-0	573.1	0.0	573.1	138.1	435.0	1.0	435.0
B-1	2,007.5	0.0	2,007.5	352.0	1,655.5	4.0	413.9
B-2	1,814.0	0.0	1,814.0	302.4	1,511.6	4.0	377.9
C-0	474.8	0.0	474.8	69.1	405.7	1.0	405.7
C-1	2,455.7	0.0	2,455.7	176.1	2,279.6	5.0	455.9
C-2	2,302.4	0.0	2,302.4	151.2	2,151.2	5.0	430.2
計	15,063.3			1,729.5	13,333.8	31.0	464.7

φ 400 · Dw800

杭配置図と必要杭本数の以下に示す。

杭配置 Ø 400Dw800 杭本数:28本

必要杭本数

杭支点	長期軸力 NL(kN)	その他荷重 Wo (kN)	Nw NL+Wo (kN)	50%浮力 (kN)	杭配置用軸力 (kN)	杭本数 (本)	軸力 (kN/本)
建物重量	16,043.1	0.0	16,043.1	2,432.5	13,610.6	28.0	486.1
計	16,043.1			2,432.5	13,610.6	28.0	486.1

令和 2年 1月 10日

見積書

舞鶴市長様

大阪市西区京町堀一丁目7番11号 株式会社 ジオダイナミック 大阪支店 取締役 加賀山 誠也

見積金額: 1,981,100 円也

但し 静渓ポンプゲート設置工事 小径つばさ杭工法(CHR機)杭1本当り施工費(材・工)

上記金額をもってお請けいたしますのでご用命願い上げます。

御支給品	別途工事	支払条件	特記事項
別途条件書通り	別途条件書通り	協議による	消費税は見積金額に含んでおりません。

1. 見積り条件

- (1) 見積り範囲 小径つばさ杭施工費(打設費、材料費、組立解体費)
- (2) 無償貸与品

① 事務所、作業員休憩所

② バリケード、標識等の安全設備

(3) 別途工事 ① 労災保険、各種工事保険

② 道路·場内保安要員

③ 作業ヤードの整地、造成、地盤改良

④ 測量、杭芯出し⑥ 杭頭処理、杭頭金具類の取付け(材料費は鋼管費に含みます)

- ⑤ 鋼管事前溶接試験、品質確認試験
- (4) 特記事項 ① 御指示の図面に基づき見積もりましたが、条件等に相違が生じた場合は別途協議願います。
 - ② 機械搬入(杭打ち機・低床サーラー、機材:10tトラック)は支煙の無いものとします。また、施工教量に増減が生じた場合は、別途協議願います。 ③ 作業地館は平坦かつ水平に整地されているものとし、重機作業に支障無いものとします。また、上空制限は無いものと致します。

 - ④ 支持層が硬質で貫入困難な場合は、つばさ杭管理指標による打ち止めとします。また、中間層の玉石等でプレオーガが必要な場合は
 - 別途ご協議願います。
 - ⑤ 空堀部埋め戻し土が不足する場合は御支給願います。
 - ⑥ 貴社の都合により手待ちが生じた場合は、その間の機械損料及び労務費の補償をお願いします。
 - ⑦ 作業時間は 8:00~18:00 を標準とします。⑧ 本見積書には消費税等は含んでおりません。
 - ⑨ 見積有効期限は、1ヶ月といたします。
- 2. 数量

記号	杭径	つばさ径・厚	貫入長	杭長	空堀長	本数	鋼管面	重量	溶接筒	所
	(mm)	(mm)	(m)	(m)	(m)	(本)	t/本	t	カ所/本	カ所
400-800	400	800-28	23. 0	16.5	6.5	1	1.577	1.577	3	
		-		-					-	
ät			23. 0	16.5		1		1.577		

3. 工事工程

施工日数	1 (本)÷	0.50	(本/日)=	2	(日)
		工事日数			
	組立	1	(日)/1セット		
つばさ杭エ	つばさ施工	2	(日)/1セット		
全体工程	中間移動	0	(日)/1セット		
	解体	1	(日)/1セット	休日比率	
	雨天休日	1	(日)/1セット	30.0	96
	St.	5	(日)/1セット	0.2	ヶ月

4. 小径つばさ杭工事費内訳

妾工事費 >-800 800	施工費材料費	L=23. 0m I =16. 5m	本本本	1.0	1, 509, 600 471, 500	1, 509, 600 471, 500		3箇所溶接
								3箇所溶接
-800								
						471,000		
管溶接部品質管理試験			箇所	3. 0			別途	
小計						1, 981, 100		
重仮設費								
2解体輸送費			セット	1.0	2, 668, 000	2, 668, 000		
助段取換え費			0					
小計						2, 668, 000		
頁処理費			本	1.0			別途	
合計						4, 649, 100		-
端数処理						-9, 100		
再計						4, 640, 000		
1	小計 值仮設費 [解体輸送費 5段取換え費 小計 「処理費 合計 編数処理	小計 這反於費 上解体輸送费 持段取換え費 小計 1処理費 合計 端敷処理	小計 這假設費 上解体輸送費 自段取換え費 小計 列理費 合計 剪級処理	小計 4仮設費 2解体輸送費 セット 6段取換え費 ロ 小計 ・ハ計 4処理費 本 金計 端敷処理	小計 i仮設費 i解体輸送費 セット 1.0 i段取換え費 回 小計 小計 i処理費 本 1.0 合計 端敷処理	小計 i仮設費 i解体輸送費 セット 1.0 2,668,000 i段取換え費 回 小計 i処理費 本 1.0 合計	小計 1,981,100 1.6反設費 1.0 2.668,000 2,668,000 2.668,000 2,668,000 1.0 2,668,000 1.0 2,668,000 1.0 2,668,000 1.0 2,668,000 1.0 4,649,100 合計 4,649,100 婚報处理 -9,100	小計 1,981,100 4仮設費 1,981,100 2,668,000 2,668,000 1,00 2,668,000 1,00 2,668,000 1,00 3,668,000 1,00 3,668,000 1,00 3,668,000 1,00 3,668,000 2,668,000 3,668,000 1,00 3,668,000 4,649,100 3,668,000 4,649,100 3,000 4,649,100 3,000 4,649,100 3,000 4,649,100 3,000 4,649,100 3,000 4,649,100 3,000 4,649,100 3,000 4,649,100 3,000 4,649,100 3,000 4,000 3,000 4,000 3,000 4,000 3,000 4,000 3,000 4,000 3,000 5,000 3,000 6,000 3,000 6,000 3,000 7,000 3,000 7,000 3,000 8,000 3,000 8,000 3,000 9,000 3,000 9,000 3,000 9,000 3,000 1,000 3,000 </td

1-1号内訳表 低空頭つばさ杭1本当り打設費

名 称	摘 要・寸 法	呼称	員 数	単 価	小 計	備考
世話役		人	1.96	22, 700	44, 492	
とびエ		人	3. 92	23, 400	91, 728	-1411
溶接工		人	1.96	24, 700	48, 412	
低空頭杭打機運転	CHR機	日	1.96	426, 300	835, 548	
バックホウ運転		日	1.96	50, 300	98, 588	
4.9t吊リクレーン運転		日	1. 96	51, 810	101, 547	
発電機・半自動溶接機運転		日	1. 96	28, 390	55, 644	
プレボーリングエ		m		43, 400	0	
諸雜費	上記計の18% (宿泊費含む)	式	1.0		233, 641	
	1本当り施工	DE CONTRACTOR DE			1, 509, 600	(円/本)

96

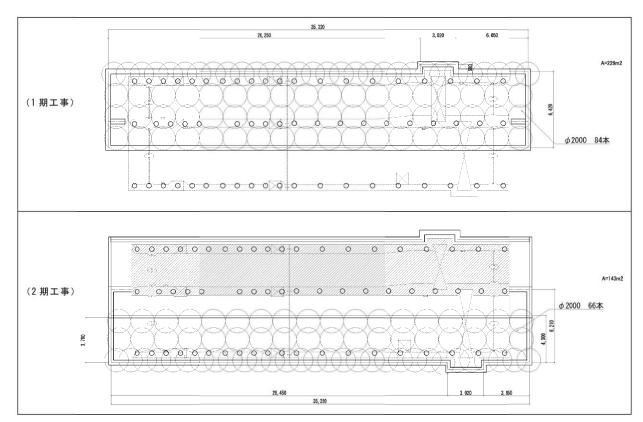


図 2-6 改良コラムの配置図

設計内訳書

工事名 静渓ポンプ場 地盤改良(JSG))				事業区分		
					工事区分		
工事区分・工種・種別・細別	規格	単位	数量	単作	lli	金額	摘要
[2号内訳書] 地盤改良工							
						1	式当り
第1期工事分							
		式	1	21, 998,	600	21, 998, 600	1号明細書
第2期工事分						21,000,000	- 2-33 He III
		式	9	17, 397,	800	17, 397, 800	2.具明細型
排泥処理費		24		11,001,	000	11,021,000	2.001 和日
Colored States (Colored States Colored States Color		m3	1, 351. 6	15	000	20, 274, 000	2.以作体来
合計		EII-O	1, 351. 0	10,	000	20, 214, 000	3万八四次
Verbount.		- Pa	-24			EQ 670 400	
1式当り		九				59, 670, 400	
						20.000.00	
-			-			59, 680, 000	
			SV S				¢.
			0;		1000		, si
			*				
					1		
							EN LANZ (A. VERNILLANDER E

b) 地盤改良工事費、施工日数

高圧噴射工法工事費

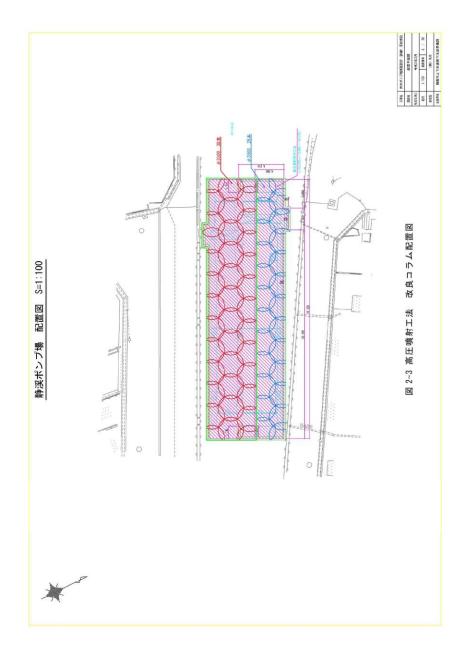
 $\phi 3500 L = 16.4 m n = 38 + 25 = 63 \text{ }$

工事費: 200,040,000円

運搬・組立て: 1,150,000円(2回目乗り込み費用加算)

全工事費: 201, 190, 000 円

※排泥処理費については、現場条件や受入先を考慮し、別途高速道路利用費等を見込む。


施工日数

2回目乗り込み日数6日を加算。

地盤改良工法全施工日数:89日+6日 = 95日 (≒3.5ヶ月)

なお、施工日数の根拠を以下に示す。

準備工(準備、搬入、プラント組立、仮設、試運転、プラント解体、搬出	:n1=	6	日
削孔工延日数	:nB=	58	日
造成工延日数	:nC=	49	日
設備移動据付(3日/回)	:n2=	0	日
予備日(雨天、休日)(n1+(nB or nC)+n2)×0.4	:n3=	25	H
合計 Σn=(n1+(nB or nC)+n2+n3		89	日

NIジェット工法(ケーシング削 工事名

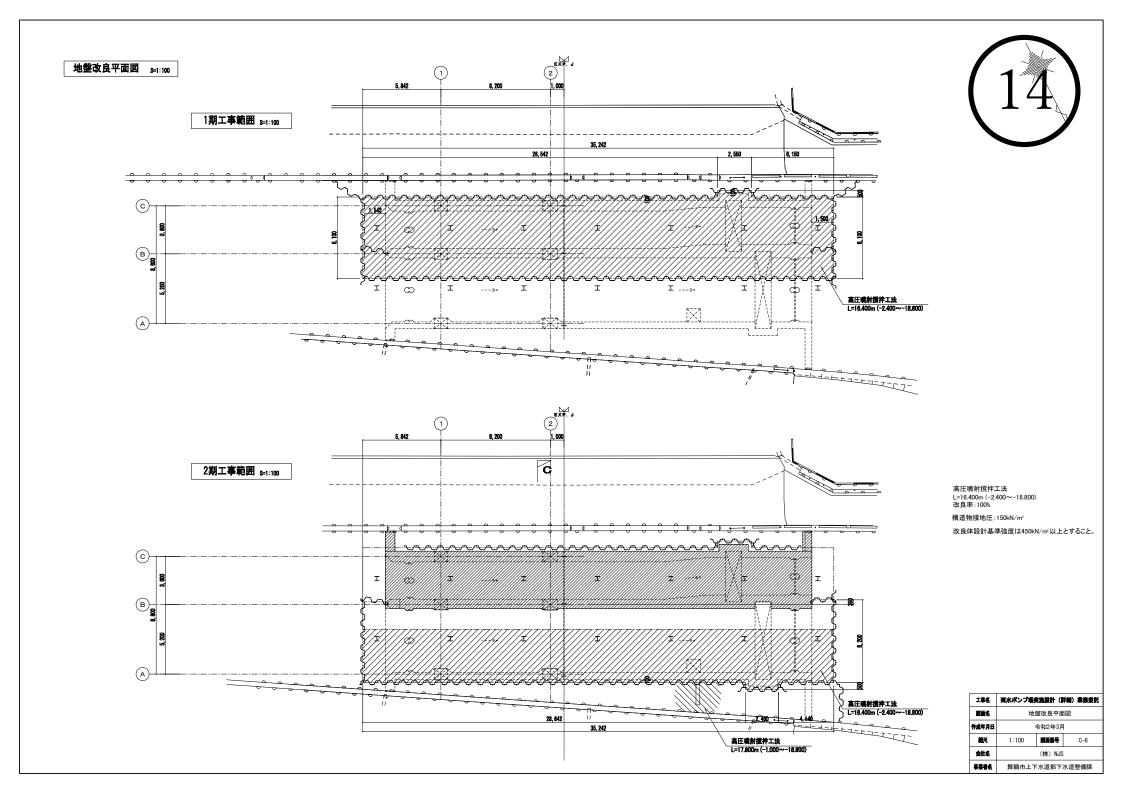
内訳書

N1ジェットエ

|--|

名 称	仕様	単位	数量	単価	金 額	備	析
直接工事費							
材料費	N-S (標準)	E E	3, 167. 64	10,056	31,852,204 代価表	代価表 No.	1
労務費	削孔工	ш	58.00	59, 400	3,445,200 代価表	代価表 No.	2
労務費	造成工	H	49.00	121,900	5,973,100 代価表	代価表 No.	60
機械損料費		柗	1.00	36, 625, 949	36,625,949 代価表	代価表 No.	4
消耗材料費		村	1.00	41, 874, 406	41,874,406 代価表	代価表 No.	വ
排泥液処理費		m3	4, 366.00	15,000	65, 490, 000 代価表	代価表 No.	9
動力・用水費		柗	1.00	5, 708, 397	5,708,397 代価表	代価表 No.	7
機械据付撤去費		#	1.00	1, 147, 800	1,147,800 代価表	代価表 No.	∞
特許使用料		°E	3, 167. 64	2, 500	7, 919, 100		
世 小					200, 036, 156		
					,4		
和					200, 036, 156		

99


c) 仮設構台概算工事費 (杭基礎案)

		10.15			336 6	A 4T	
工種		規格	単位	数量	単価	金額	備考
覆工板	設置・撤去工	2000×1000	m2	700	2,000	1,400,000	
	賃料	2000 × 1000	m2	700	30,000	21,000,000	リース期間:23ヶ月
		•		小 計		22,400,000	
上部工	覆工受桁	H-700 × 300 × 13 × 24	t	90			
	横桁	[-300 × 90 × 9 × 13	t	15			
	横桁取付鋼板	t=16	t	3			
	桁材計		t	108	/		
	架設・撤去工		t	108	24,000	2,592,000	
	桁材賃料		t	108	80,000	8,640,000	全損(中古価格)
				小 計		11,232,000	
下部工	桁受梁	H-700 × 300 × 13 × 24	t	46	/		
	水平つなぎ	[-200 × 90 × 8 × 13.5	t	21	/		
	ブレース	L-100 × 100 × 10	t	20			
	杭天端鋼板	t=22	t	4			
	桁材計		t	91	/		
	架設・撤去工		t	91	70,000	6,370,000	
	桁材賃料		t	91	80,000	7,280,000	全損(中古価格)
	'			小 計		13,650,000	
構台杭(1)	構台杭打込み工	H-350 × 350 × 12 × 19	本	39	43,000	1,677,000	L=24.0m
	構台杭重量		t	168	/		
	構台杭撤去工		t	96	23,000	2,208,000	
	構台杭撤去分	撤去分	t	96	60,000	5,760,000	中古品(新品×80%)
	構台杭残置分	残置分	t	72	70,000	5,040,000	中古品(新品×90%)
	継手工		箇所	39	32,000	1,248,000	
	切断工		本	32	6,000	192,000	
	•	•		小 計		16,125,000	
構台杭(2)	打込み工	H-300 × 300 × 10 × 15	本	6	43,000	258,000	L=22.5~23.5m
	支持杭重量		t	13	68,000	884,000	中古品(新品×90%)
	継手工		箇所	6	32,000	192,000	
				小 計		1,334,000	
合計						64,741,000	

日特建設株式会社

d) 仮設構台概算工事費(地盤改良案)

工種		規格	単位	数量	単価	金額	備考
覆工板	覆工板設置撤去工	2000 × 1000	m2	420	2,000	840,000	
	覆工板賃料	2000 × 1000	m2	420	15,000	6,300,000	リース期間:17.5ヶ月
		•	•	小 計	•	7,140,000	
上部工	覆工受桁	H-594 × 302 × 14 × 23	t	45			
	横桁	[-300×90×9×13	t	6			
	横桁取付鋼板	t=16	t	1			
	桁材計		t	52			
	架設・撤去工		t	52	24,000	1,248,000	
	桁材賃料		t	52	49,000	2,548,000	リース期間:17.5ヶ月
	•			小 計		3,796,000	
下部工	桁受梁	H-594×302×14×23	t	18			
	水平つなぎ	[-200×90×8×13.5	t	8	/	/	
	ブレース	L-100×100×10	t	7			
	杭天端鋼板	t=22	t	1	/	/	
	桁材計		t	34			
	架設・撤去工		t	34	70,000	2,380,000	
	桁材賃料		t	34	49,000	1,666,000	リース期間:17.5ヶ月
				小 計		4,046,000	
構台杭(1)	構台杭打込み工	H-350 × 350 × 12 × 19	本	26	43,000	1,118,000	L=24.0m
	構台杭重量		t	86		/	
	構台杭撤去工		t	47	23,000	1,081,000	
	構台杭撤去分	撤去分	t	47	60,000	2,820,000	中古品 (新品×80%)
	構台杭残置分	残置分	t	39	70,000	2,730,000	中古品 (新品×90%)
	継手工		箇所	26	32,000	832,000	
	切断工		本	21	6,000	126,000	
				小 計		8,707,000	
構台杭 (2)	打込み工	H-300 × 300 × 10 × 15	本	6	43,000	258,000	L=22.5~23.5m
	支持杭重量		t	13	68,000	884,000	中古品 (新品×90%)
	継手工		箇所	6	32,000	192,000	
				小 計		1,334,000	
合計	<u> </u>					25,023,000	

舞鶴市上下水道部公告第7号

下記のとおり条件付一般競争入札を行うので、舞鶴市契約規則(以下「規則」という。)第3 条に基づき公告する。

本件は、競争参加資格確認申請書及び競争参加資格の確認資料の提出及び入札を京都府電子 入札システム(以下「電子入札システム」という。)で行うものとする。なお、電子入札システムによりがたい者は、発注者の承諾を得て例外的に紙入札方式によることができる。

令和3年4月19日

舞鶴市長 多々見 良三

記

1 工事概要

(1) 工事名 静渓ポンプ場建設 (第 21-1) 工事

(2) 工事場所 舞鶴市 字魚屋 地内

(3) 工事内容 躯体工・ ポンプ場 (L 31.9m×W 9.6m×H 4.1m 水路部)

鉄筋コンクリート V:= 716 m³

付带工 合成木材角落 N= 1 式

土工 床掘 V= 687 ㎡

仮設工 鋼矢板/ット 25H型 H = 12.5m N = 154 枚

仮設構台 覆工板 A = 412 m²

基礎工 高圧噴射地盤改良 L= 16.4m N= 64本(φ3500)

- (4) 工事区分 土木一式工事
- (5) 工 期

契約締結の翌日 ~ 令和5年1月31日

(6) 予定価格(税込) 652,743,300円

(税抜) 593,403,000円 (入札書比較価格)

入札書比較価格は、予定価格の110分の100に相当する価格である。

(7) 発注担当課 上下水道部下水道整備課

2 競争参加資格

本工事の入札に参加できる者は、次に掲げる要件すべてを満たし、かつ、下記4により舞 鶴市の競争参加資格の確認を受けた特定建設工事共同企業体(以下「共同企業体」という。)と する。

- (1) 共同企業体としての資格要件
- ア 自主的に結成された共同企業体であること。
- イ 経営の形態は、共同施工方式であること。
- ウ 構成員は、3者で構成するものとし、2.(2)及び2.(3)の資格要件を満たすもの1者、2.(2)及び2.(4)の資格要件を満たすもの2者の組み合わせとする。

ア 地方自治法施行令 (昭和22年政令第16号) 第167条の4の規定に該当しない者であること。

ただし、各構成員は、本工事に係る他の共同企業体の構成員となることができない。

エ 1構成員の出資比率の最小限度は20パーセントとする。

(2) すべての構成員の資格要件

- イ 令和3年度舞鶴市建設工事競争入札参加資格者として登録されている者であること。
- ウ 発注工種(一般競争入札を行おうとする対象工事の建設業法第3条第2項に規定する 建設工事の種類をいう。以下同じ。) について、建設業法第27条の23に定めのある経 普事項審査を受け、かつ、その有効期間内にある者であること。
- エ 申請書提出期限日から落札決定までの間において、舞鶴市入札参加停止に関する要綱 (平成30年告示第34号)に基づく入札参加停止(以下「入札参加停止」という。)の期間中でない者であること。
- オ 申請書提出期限日から落札決定までの間において、舞鶴市契約に関する暴力団等排除措置要綱(平成24年告示第171号)に基づく入札参加等除外措置(以下「入札参加等除外措置」という。)を受けていない者であること。
- カ 申請書提出期限日以前6か月から落札決定までの間において、手形交換所で不渡手形 若しくは不渡小切手を出した事実又は銀行若しくは主要取引先からの取引停止等を受け た事実がある者でないこと。
- キ 会社法 (平成 17 年法律第 86 号) 第 475 条又は第 644 条の規定に基づく清算の開始、 破産法 (平成 16 年法律第 75 号) 第 18 条第 1 項又は第 19 条第 1 項の規定に基づく破 産手続開始の申立て、会社更生法 (平成 14 年法律第 154 号) 第 17 条の規定に基づく 更生手続開始の申立て又は民事再生法 (平成 11 年法律第 225 号) 第 21 条の規定に基づく で、再生手続開始の申立てがなされている者 (会社更生法の規定に基づく更生手続開始 の申立て又は民事再生法の規定に基づく再生手続開始の申立てについては、更生計画の 認可が決定し、又は再生計画の認可の決定が確定したものを除く。) でないこと。
- ク 1.(1)に示した工事に係る設計業務等の受託者又は当該受託者と資本者しくは人事面 において関連がある建設業者でないこと。

(3) 代表構成員の資格要件

- ア 舞鶴市内に建設業法第3条の規定に基づく本店を有する者(市内業者)で、令和3年度 舞鶴市建設工事競争入札参加資格者のうち、「土木一式工事」の「A等級」に認定されている者(当該資格審査に伴う「建設工事入札参加資格審査結果通知書(令和3年4月9日付け舞総契第1号)」(当該通知以除に本市の合併等による特例措置の適用を受けた者は「合併等特例措置適用に伴う建設工事競争入札参加資格審査結果通知書」)における総合点数が930点以上の者。)であること。
- イ 当該企業共同体における出資比率が、その他の構成員の出資比率を上回る者であること。
- ウ 建設業法第3条の規定に基づく土木工事業に係る特定建設業の許可を有する者である こと。
- エ 別表1記載のすべての要件を満たす監理技術者を、本入札に付する工事現場に専任で 配置できる者であること。ただし、施工に当たって、監理技術者は原則として変更できな いが、やむを得ない特別な理由(病気、死亡及び退職等)により変更する場合は、当該技術 者と同等以上の資格及び経験を有する者を専任で配置すること。

(4) 他の構成員の資格要件

- ア 舞鶴市内に建設業法第3条の規定に基づく本店を有する者(市内業者)で、令和3年度 舞鶴市建設工事競争入札参加資格者のうち、「土木一式工事」の「A等級」に認定されて いる者であること。
- イ 別表2記載のすべての要件を満たす主任技術者を、本入札に付する工事現場に専任で 配置できる者であること。ただし、施工に当たって、主任技術者は原則として変更でき ないが、やむを得ない特別な理由(病気、死亡及び退職等)により変更する場合は、光該

5

技術者と同等以上の資格及び経験を有する者を専任で配置すること。

(5) その他

ア 事業協同組合等にあっては中小企業庁の官公需適格組合の証明(入札日において有効なもの)を受けている者であること。また、「官公需適格組合」と「その組合員」が結成する共同企業体又はそれぞれが独自に結成する両共同企業体は、参加申請することは認められない。

3 設計業務等の受託者等

(1) 2. (2) クの「1. (1) に示した工事に係る設計業務等の受託者」とは、次に掲げる者である。

株式会社NJS

- (2) 2. (2)クの「当該受託者と資本若しくは人事而において関連がある建設業者」とは、 次のア又はイに該当する者である。
- ア 当該受託者の発行済株式総数の 100 分の 50 を超える株式を有し、又はその出資の総 額の 100 分の 50 を超える出資をしている建設業者
- イ 建設業者の代表権を有する役員が当該受託者の代表権を有する役員を兼ねている場合における当該建設業者

4 競争参加資格の確認

(1) 本競争の参加希望者は、競争参加資格確認申請書(以下「申請書」という。)及び競 争参加資格の確認資料(以下「確認資料」という。)を提出し、市長の競争参加資格の 確認を受けなければならない。

なお、期限までに申請普及び確認資料を提出しない者(共同企業体)又は競争参加資格がないと認められた者(共同企業体)は、本競争に参加することができない。

(2) 申請に必要な資料の入手方法等

ア 原則として、京都府入札情報公開システム(以下「入札情報公開システム」という。) の入札公告・入札情報からダウンロードすること。

イ 情報公開システムのURL

https://kyoto.efftis.jp/26000/CALS/PPI_P/

ウ やむを得ず窓口配布を希望する場合は、(5)の受付期間開始までに、契約課へ問い 合わせの上、入手すること。

(3) 申請書及び確認資料の提出方法

ア 電子入札システムにより入札に参加する者(以下「電子入札者」という。)は、電子入 札システムにより(4)に示す提出書類を提出すること。

なお、確認資料の容量が総量で2メガバイトを超える場合若しくは確認資料を電子 化することができない場合は、その全部について持参又は郵送(申請書の受付期間内に 必着させるとともに、郵便書留等の配達記録が残る方法を利用するものに限る。)をす るとともに、申請書に確認資料を別送する旨の表示、別送する書類の目録、別送する書 類のページ数及び発送年月日(郵便の場合に限る。)を記載したファイルを添付すること。

イ やむを得ず、発注者の承諾を得て紙入札方式により入札に参加する者(以下「紙入札者」 という。)は、(6)に示す受付期間内(閉庁日、正午から午後1時まで及び午後5時から 午後6時までを除く。)に(4)に示す提出書類を持参すること。

(4) 申請書及び確認資料の提出(提出書類)

申請に必要な書類は次のとおりとする。

ア 競争参加資格確認申請書

電子入札者は電子入札システムによるものとし、紙入札者は別途指定する様式を使用すること

- イ 配置予定技術者等の資格及び工事経験 (様式第3号) .
- ウ 特定建設工事共同企業体協定書 (写し)

協定書の本紙 (押印のあるもの) の写しをファイル形式 (PDF 等) で作成し、 添付すること。

エ 土木工事業における建設業法上の許可通知書の写し又は許可証明書

※当該年度の入札参加資格審査申請(変更届を含む)後に変更がある場合のみ 添付すること。

(5) 確認資料作成の注意事項

確認資料は、別表1、別表2及び別表3の記載事項に従い作成すること。

(6) 申請書及び確認資料の受付期間等

申請書及び確認資料は、次のとおり受け付ける。

ア 受付期間:令和3年5月12日(水)午前9時から午後6時まで

令和3年5月13日 (木) 午前9時から正午まで

- イ 申請書の提出方法: 電子入札システムによる。
- ウ 確認資料の提出方法:電子入札システムによる。
- エ 持参又は郵送する場合の提出場所:

〒625-8555 舞鶴市字北吸 1044 番地 舞鶴市総務部契約檢查室契約課

(7) 競争参加資格確認結果の通知

競争参加資格の確認は、申請書の提出期限(受付期限)をもって行うものとし、その結果は令和3年5月17日電子入札システムにより通知する(紙入札者には軽送する。)。

- (8) 競争参加資格がないと認めた者に対する理由の説明
- ア 競争参加資格がないと認められた者は、当該通知書の受理日から5日(休日を除く。) を経過する日まで書面により、発注者に対して競争参加資格がないと認めた理由について説明を求めることができる。
- イ アの審面は総務部契約検査室契約課に提出(特参)するものとし、郵送又は電送による ものは受け付けない。
- ウ 説明を求められたときは、受理日から5日(休日を除く。)を経過する日までに書面により回答する。

(9) その他

- ア 資料の作成に係る費用は、提出者の負担とする。
- イ 提出された資料は、当市において無断で使用することはできないものとする。
- ウ 提出された資料は、返却しない。
- エ 提出期限以降における申請書又は資料の差し替え及び再提出は認めない。
- オ 資格確認の有効期間は、確認の日から当該工事の履行後3か月を経過する日(落札者 以外の者については、本工事に係る契約が締結される日まで)とする。

5 設計図書の閲覧等

- (1) 設計図書は、入札情報公開システムにて閲覧に供する。
- ア 閲覧期間: 令和3年4月19日(月)以降
- イ 情報公開システムのURL

https://kyoto.efftis.jp/26000/CALS/PPI_P/

(2) 設計図書の入手方法

ア 原則として、入札情報公開システムの入札公告・入札情報からダウンロードすること。

イ やむを得ず窓口配布を希望する場合は、4. (6) の受付期間開始までに、契約課へ 問い合わせの上、入手すること。

なお、窓口配布により設計図書の配布を希望する場合、当該入札参加要件を満たす者 に限って後日有償で配布する。

- (3) 設計図書等に対する質問がある場合は、次のとおり書面により提出することとし、書面は下記へファクシミリにより提出すること。
- ア 受付期間 令和3年5月13日(木)正午まで
- イ 質問宛先 下水道整備課 FAX 番号 0773-66-0510
- (4) (3)の質問に対する回答書は、競争参加資格が「有」と認められた業者全てにファクシミリにより送付する。

ア 回答日 令和3年5月17日(月)

6 入札期間及び開札の日時等

入札期間及び開札日時等は次のとおりとする。

- ア 入札期間: 令和3年5月21日(金) 午前9時から午後6時まで 令和3年5月24日(月) 午前9時から午後2時まで
- イ 入札方法 電子入札システムによる。
- ウ 電子入札システムの URL

https://kyoto.efftis.jp/26000/CALS/Accepter/

工 開札日時: 令和3年5月25日(火) 午前9時00分

7 入札方法等

別表4記載の入札注意事項による。

8 入札保証金

免除する。

9 最低制限価格の設定

有り

関札の結果、無効となった者を除く全ての入札者の入札金額が最低制限価格(当初)を 下回った場合は、次に掲げるものを除く全ての入札者の入札金額の平均値(1,000円未満 の端数は切り捨てる。)を最低制限価格(変動後)として落札者を決定する。

- (1) 予定価格に10分の7を乗じて得た額を下回る入札価格
- (2) 予定価格を事前公表する場合における予定価格を超える入札価格
- (3) 入札が無効となった者の入札価格

10 落札者の決定方法

舞鶴市契約規則(昭和39年規則第25号)第15条の規定により作成された予定価格の 制限の範囲内で最低制限価格以上の価格をもって申込みをした者のうち、最低の価格をもって申込みをした者を落札者とする。

11 落札の取消

- (1) 無効の入札を行った者を落札者としていた場合には落札決定を取り消すものとする。
- (2) 落札者(共同企業体においては、その構成員のいずれか)が、落札決定から契約締結予 定日までの期間に、本市の入札参加停止措置又は入札参加等除外措置を受けた場合若 しくは2.(2)キの申立てに該当することとなった場合は、当該落札を取り消すものと する。

1.2 契約締結予定日

令和3年5月31日(月)

13 契約保証金

落札者は請負代金の100分の10以上の額の契約保証金を契約の締結と同時に納入しなければならない。この場合において、銀行その他市長が確実と認める金融機関又は保証事業会社(公共工事の前払金保証事業に関する法律(昭和27年法律第184号)第2条第4項に規定する保証事業会社をいう。)の保証をもって契約保証金の納付に代えることができ、公共工事履行保証証券による保証を付し、又は履行保証保険契約の締結を行った場合は、契約保証金を免除する。

14 契約の条件等

(1) 舞鶴市上下水道工事請負約款(平成23年4月1日舞鶴市水道部告示第9号)(以下「約款」という。) により契約するものとする。

【約款】

舞鶴市上下水道部が発注する上水道工事請負契約の約款については、舞鶴市工事請負契約約款(平成9年告示第39号)の例によるものとする。

(2) 契約約款は舞鶴市ホームページに掲載する。

郷鶴市ホームページアドレス

http://www.city.maizuru.kyoto.jp/

(3) 共同企業体との契約においては、その共同企業体名を冠した代表者を記名・押印する こととし、その他の書類すべて同様とすること。

例:〇〇·□□·△△特定建設工事共同企業体

代表者: 株式会社〇〇建設 代表取締役 〇〇〇〇 ⑩

15 支払条件

(1) 前金払

請負代金額(債務負担行為の場合は当該年度の出来高予定額)の4割以内の金額を前払 金として支払う。

(2) 中間前金払

「舞鶴市公共工事前金払事務取扱要領」により、請負代金額(債務負担行為の場合は当該年度の出来高予定額)の2割以内の金額を中間前払金として支払う。

(3) 部分払

請負代金额が 500 万円以上の工事については1回、1,000 万円を超える工事については2回、3,000 万円を超える工事については3回まで部分払できる。

(4) 中間前金払と部分払の選択

「舞鶴市公共工事前金払事務取扱要領」に定めるところによる。

16 契約書作成の要否

- (1) 別冊契約書案により契約書を作成するものとする。
- (2) 落札者は、契約書を作成し、契約締結予定日に契約書を提出しなければならない。

17 違約金

落札者が契約を締結しないときは、落札金額の100分の5相当額の連約金を徴収する。

舞鶴市暴力団排除条例(平成24年舞鶴市条例第23号)第12条第5項の規定による「誓約書」を発注者が指定する日までに提出しないため契約しない場合及び、11.(2)の入札参加等除外措置により当該客札を取り消す場合も同様とする。

18 契約の手続において使用する言語及び通貨

日本語及び日本国通貨

19 火災保険等の付保

設計図書等に定める。

20 その他

- (1) 入札参加者は、本公告文、設計図書等及び契約約款を熟読し、入札に関する心得を 遵守すること。
- (2) 電子入札者にあっては、舞鶴市ホームページに掲載されている「舞鶴市電子入札試行運用基準」を遵守すること。
- (3) 申請書又は資料に虚偽の記載をした場合においては、入札参加停止を行うことがあ
- (4) 落札者は舞鶴市暴力団排除条例第12条第5項の規定により、契約の締結に当たり 「誓約書」を提出すること。なお、誓約書を提出しない場合は契約しない。
- (5) その他詳細不明の点については、舞鶴市総務部契約検査室契約課(電話 0773 66 1065(直通)) に照会のこと。ただし、工事概要に関することについては、舞鶴市下水道整備課(電話 0773 66 1029 (直通))。

別表 1

2.(3)代表 構成員の資格 要件.エの要

- ① 1級土木施工管理技士又はこれと同等以上の資格を有する者であること。なお、「これと同等以上の資格を有する者」とは、次の者をいう。
- (ア) 1級建設機械施工技士の資格を有する者
- (イ) 技術士 (建設部門、農業部門 (選択科目を「農業土木」とするものに限る。)、森林部門 (選択科目を「森林土木」とするものに限る。)、水産部門 (選択科目を「水産土木」とするものに限る。) 又は総合技術監理部門 (選択科目を建設部門に係るもの、「農業土木」、「森林土木」又は「水産土木」とするものに限る。) の資格を有する者
- (ウ) これらと同等以上の資格を有するものと国土交通大臣が認定した 考
- ② 土木工事業に係る監理技術者資格者証 (講習受講日から5年以内であること) を有するもの。
- ③ 代表構成員として申請した者と直接的かつ恒常的(申請書提出期限 日を含め連続して3ヶ月以上継続していること。)な雇用関係にある者

別表2

2. (4) 他の構成員の 資格要件. イ の要件

- ① 1級若しくは2級(種別を「土木」とするものに限る。)土木施工管理技士又は1級若しくは2級建設機械施工技士又はこれと同等以上の資格を有する者であること。なお、「これと同等以上の資格を有する者」とは、次の者をいう。
- (ア)技術士(建設部門、農業部門(選択科目を「農業土木」とするものに限る。)、森林部門(選択科目を「森林土木」とするものに限る。)、水産部門(選択科目を「水産土木」とするものに限る。)又は総合技術監理部門(選択科目を建設部門に係るもの、「農業土木」、「森林土木」又は「水産土木」とするものに限る。)の資格を有する者
- (イ)これらと同等以上の資格を有するものと国土交通大臣が認定した
- ② 他の構成員として申請した者と直接的かつ恒常的(申請書提出期限 日を含め連続して3ヶ月以上継続していること。) な雇用関係にある者

別表3 (確認資料作成の注意事項)

「配置予定技術者等の資格及び工事経験」 (様式第3号)の作成について以下の点に留意すること。

- ア 資格の有無を判断できる配置予定技術者等の資格、経歴、同種工事の経験等(当該構成員の参加要件となる許可業種に係る工事の経験を含む。)を記載すること。(配置予定の者を記載することとし、その資格、同種工事の経験欄に記載する同種工事の経験の件数は1件でよい。
- イ 配置予定の主任技術者(又は監理技術者)については、それぞれの所属建設業者と直接 的かつ恒常的(申請書提出期限を含め連続して3ヶ月以上)な雇用関係にある技術者を 記載すること。
- ウ 配置予定の現場代理人については所属建設業者(代表構成員)と直接的な雇用関係に ある者を記載すること。

なお、現場代理人及び監理技術者については、1人の者が兼ねることができる。

エ 建設業許可に係る営業所の専任技術者は、現場代理人又は専任を要する主任技術者 (監理技術者)して記載することはできない。 他の工事と兼任して配置することは認められない。

同一の技術者等を他の工事の配置予定の技術者等と重複して申請することは認め られない。また、他の工事(竣工(完了)届が受理されているものを除く。)に配置さ れている者(入札公告に記す契約締結予定日(議会の議決を要する契約の場合は、本 契約成立日)において確実に配置可能となる者を除く。)を配置予定技術者とすること も認められない。(1人を特定せずに、複数の候補者を配置予定として申請する場 合は、候補者全てが要件を満たしていることが必要であり、また、同時期に入札が 行われる複数の案件に対して、複数の候補者を配置予定とする場合は、その組み 合わせに矛盾がない場合に限り認める。)

配置予定の技術者等として申請した者を配置することができなくなった場合、その 者に代えて、要件を満たす技術者等を配置予定とすることができないときは入札しては ならず、申請書を提出した者は、直ちに当該申請書の取下げを行うこと。

当該競争参加資格の申請は、契約締結予定日(議会の議決を要する契約の場合は、本 契約成立日)において、確実に配置できる技術者等がいることを前提とするものであり、 落札決定から契約成立までの間において、落札者となった者が技術者等を配置できない ことが明らかになった場合は、その者のした入札を無効(又は落札の取消し)とする。 また、真にやむを得ない理由がある場合を除いて、入札参加停止を行う。

キ 配置予定者については、当該年度の入札参加資格審査申請 (その後の変更届を含む) において届出のある者以外の場合は、所属建設業者と直接的な雇用の確認ができる書類 を添付することとし、技術者においては合格証明書又は監理技術者資格者証及び監理技 術者講習修了証の写しを添付すること。

別表4 (入札方法等 (入札注意事項))

(1) 提出方法

ア 電子入札者は、本公告に示す入札期間内に電子入札システムにより入札書及び工

なお、工事費内訳書の容量が総量で2メガバイトを超える場合は、契約課に持参又 は郵送(入札期限までに必着させるとともに、郵便書留等の配達記録が残る方法を利 用するものに限る。)をするとともに、入札書に工事費内訳書を別送する旨の表示、 別送する書類の目録、別送する書類のページ数及び発送年月日(郵便の場合に限る。) を記載したファイルを添付すること。

イ 紙入札者は、本公告に示す入札期間内(正午から午後1時まで及び午後5時から 午後6時までを除く。)に契約課へ入札書及び工事費内訳書を提出(必着)すること。 入札書と工事費内訳書は別々の封筒に入れ、封印等の処理をし、表封筒に入れる こと。

各封筒には次の事項を記載すること。

- 開札日
- 工事名
- · 商号 (名称)
- ・入札書もしくは工事費内訳書が在中している旨

表封筒の宛名は「舞鶴市役所総務部契約課宛」とすること。

- ウ 提出された入札書の書き換え、引き換え及び撤回はできない。
- エ 電報による入札は認めない。

(2) 入札書の記載金額

落札決定にあたっては、入札書に記載された金額に当該金額の100分の10に相 当する額を加算した金額(当該金額に1円未満の端数があるときは、その端数金額を 切り捨てた金額)をもって落札金額とするので、入札者は、消費税及び地方消費税に 係る課税事業者であるか免税事業者であるかを問わず、見積もった契約希望金額の1

10分の100に相当する金額を入札書に記載すること。

なお、入札書に記載する金額は千円止めとする。千円未満まで記入した入札書も有 効とするが、千円未満は切り捨てるものとする。

※電子入札対象案件は、予定価格を税込で表示するので、入札金額については十分留 意の上記載すること。

(3) 入札回数 1 回

(4) 工事費内訳書

ア 入札書の提出に併せ、工事費内訳書を提出すること。

イ 工事費内訳書の様式は自由であるが、記載内容は設計図書に参考資料として添付 されている金抜設計書の項目に一致させること。なお、合計金額(消費税込み)は、 予定価格以下で作成すること。

また、工事費内訳書の表紙には、工事名、工事番号及び商号(名称)のみを記載 すること。

- ウ 入札書に記載する金額は、工事費内訳書の工事価格(消費税相当額を除く合計金 額) に対応するようにすること。
- エ 工事費内訳書は、参考図書として提出を求めるものであり、入札及び契約上の権 利義務を生じるものではない。

(5) 入札の無効

次のいずれかに該当する入札は、無効とする。

- ア 本公告に示した競争に参加する者に必要な資格のない者の行った入札
- イ 申請書を提出しなかった者の行った入札
- ウ 申請書に虚偽の記載をした者の行った入札
- エ 入札書提出締切日時までに到達しない入札
- オ 電子署名及び電子証明書のない入札 (紙入札において記名押印のない入札)
- カ 金額その他重要な部分の誤脱のある若しくは不明な入札又は金額を訂正した入札
- キ 工事費内訳書の提出が必要な入札案件において、開札の日時において有効な工事費 内訳書の提出がない者が行った入札及び工事費内訳書の記載のない入札
- ク 同じ入札に2以上の入札(他人の代理人としての入札及び他人のICカードを使用 しての入札を含む。)をした者の行った入札
- ケー代表者が変更されているにもかかわらず、変更前の名義人のICカードを使用する 等のほか、ICカードの不正使用等による者の行った入札
- コ 入札に関し不正の利益を得るための連合等の不正行為をした者の行った入札
- サー予定価格が事前公表された入札において、予定価格を超える価格での入札
- シ 競争参加資格の確認の後、入札参加停止措置若しくは入札参加除外措置等を受け て、開札時点において入札参加停止若しくは入札参加除外措置期間中である者又は入 札参加停止若しくは入札参加除外措置期間中である構成員を含む共同企業体等、開札 時点において入札に参加する者に必要な資格のない者の行った入札
- ス 入札関係職員の指示に従わない等入札の秩序を乱した者の入札
- セ その他入札に関する条件に違反した者の行った入札

(6) 入札の保留

入札の結果、落札率が高い場合は入札を保留する。

(7) 入札の中止等

競争参加資格者が3者に満たない場合は、入札を中止することがある。

(8) 入札の辞退

入札に参加できない事情がある場合には、入札書提出締切日時に至るまでは、入札を 辞退することができる。この場合、電子入札システムにより幹退届を電子提出しなけれ ばならない。(紙入札者及び電子入札システムによる入札辞退届の電子提出ができない 場合は、入札辞退届を契約課へ直接持参又は入札事務関係職員が指示する方法により提 出すること。)

また、入札辞退の届出をしないで、入札書提出締切日時までに到着しない場合は当該入札を棄権したものとみなす。

(9) くじ引き

開札の結果、落札となるべき同価格の入札をした者が2人以上あるときは、「電子くじ」により落札者を決定する。

別表5 (特約事項)

ア 債務負担行為に係る契約の特則事項として、約款に次の条項を追加するものとする。 (特約条項条文)

第 60 条 債務負担行為に係る契約において、各会計年度における請負代金の支払の限度 額(以下「支払限度額」という。)は、次のとおりとする。

> 令和3年度 令和4年度

. . 円:

2 支払限度額に対応する各会計年度の出来高予定額は、次のとおりである。

令和3年度

. 円

令和4年度

四

- 3 発注者は、予算上の都合その他の必要があるときは、第1項の支払限度額及び前項の 出来高予定額を変更することができる。
- イ 債務負担行為に係る前払金の特則事項として、約款に次の条項を追加するものとする。

(特約条項条文)

(債務負担行為に係る契約の前金払及び中間前金払の特則)

- 第61条 債務負担行為に係る契約の前金払及び中間前金払については、第35条中「契約 書記載の工事完成の時期」とあるのは「契約書記載の工事完成の時期(最終の会計年度 以外の会計年度にあっては、各会計年度末)」と、第35条及び第36条中「請負代金額」 とあるのは「当該会計年度の出來高予定額(前会計年度末における第38条第1項の請負 代金相当額(以下本条及び次条において「請負代金相当額」という。)が前会計年度まで の出來高予定額を超えた場合において、当該会計年度の当初に部分払をしたときは、当 該超過額を控除した額)」と読み書えて、これらの規定を準用する。ただし、この契約を 締結した会計年度(以下「契約会計年度」という。)以外の会計年度においては、受注者 は、予算の執行が可能となる時期以前に前払金及び中間前払金の支払を請求することは できない。
- 2 前項の場合において、契約会計年度について前払金及び中間前払金を支払わない旨が 設計図書に定められているときには、前項の規定による影替え後の第35条第1項の規定 にかかわらず、受注者は、契約会計年度について前払金及び中間前払金の支払を請求す ることができない。
 - 3 第1項の場合において、契約会計年度に翌会計年度分の前払金及び中間前払金を含めて支払う旨が設計図書に定められているときには、第1項の規定による読替え後の第35条第1項の規定にかかわらず、受注者は、契約会計年度に翌会計年度に支払うべき前払金相当分及び中間前払金相当分を含めて前払金及び中間前払金の支払いを請求することができる。
 - 4 第1項の場合において、前会計年度末における請負代金相当額が前会計年度までの出

来高予定額に達しないときには、第1項の規定による読替え後の第35条第1項の規定に かかわらず、受注者は、請負代金相当額が前会計年度までの出来高予定額に達するまで 当該会計年度の前払金及び中間前払金の支払を請求することができない。

- 5 第1項の場合において、前会計年度末における請負代金相当額が前会計年度までの出 来高予定額に達しないときには、その額が当該出来高予定額に達するまで前払金及び中 間前払金の保証期限を延長するものとする。この場合においては、第36条第3項の規定 を準用する。
- ウ 債務負担行為に係る契約の部分払の特則事項として、約款に次の条項を追加するもの とする。

(特約条項条文)

- 第62条 債務負担行為に係る契約において、前会計年度末における請負代金相当額が前会計年度までの出来高予定額を超えた場合においては、受注者は、当該会計年度の当初に当該超過額(以下「出来高超過額」という。)について部分払を請求することができる。ただし、契約会計年度以外の会計年度においては、受注者は、予算の執行が可能となる時期以前に部分払の支払を請求することはできない。
- 2 この契約において、前払金及び中間前払金の支払を受けている場合の部分払金の額については、第38条第6 項及び第7 項の規定にかかわらず、次のいずれかの式により算定する。
- (1) 第35条第3項の規定により中間前金払をした場合

部分払金の額≤請負代金相当額× 9 /10

- 一前会計年度までの支払金額
 - (請負代金相当額-前会計年度までの出来高予定額)
- × (当該会計年度前払金額+当該会計年度中間前払金額) /当該会計年 度の出来高予定額

(2) 前号以外の場合

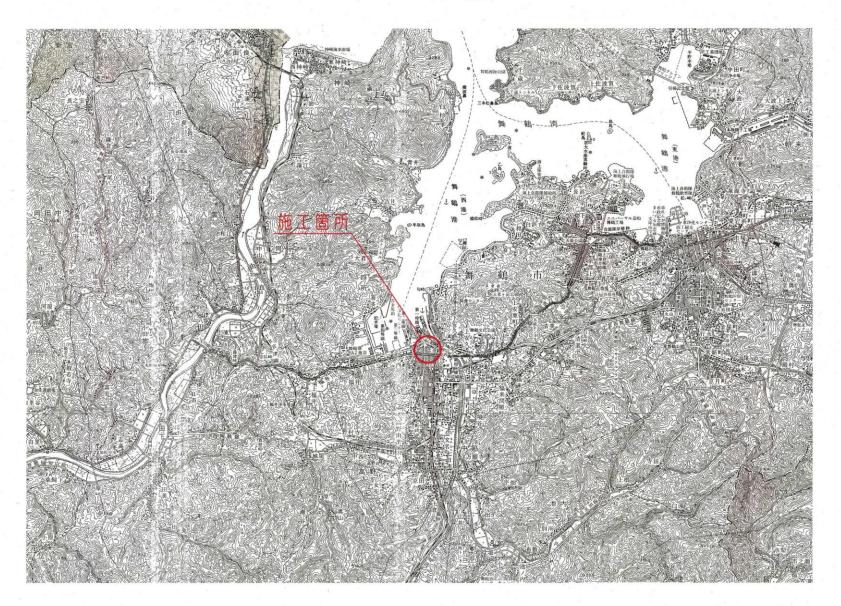
部分払金の額≤請負代金相当額×9/10

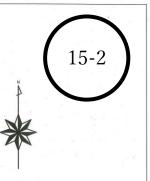
- (前会計年度までの支払金額+当該会計年度の部分払金額)
- {請負代金相当額- (前年度までの出来高予定額+出来高超過額)}

×当該会計年度前払金額/当該会計年度の出来高予定額

3 各会計年度において、部分払を請求できる回数は、次のとおりとする。

令和3年度 3回 令和4年度 3回


令和4年度 3回


- エ 特則規定に係る院換えとして、約款に次の条項を迫加するものとする。 (特約条項条文)
 - 第63 条 本特約第55条の規定を適用した場合は、第48条第3項の規定中「第35条」とあるのは「第35条(本特約第55条において準用する場合を含む。)」と、前条の規定を適用した場合は、第48条第3項の規定中「第38条」とあるのは「第38条及び本特約第56条」とそれぞれ読み替えるものとする。

静渓ポンプ場建設工事

位 置 図

(S = none)

図面	6号			1	菜	2内 1			
Я	В	Я	B	Я	B	Я	В		Я В
12	£	展	ž	設	27	製	2	¥	92
縮	尺	-		March II					
図面料	類	位	图						
工事[前所	21	自市	字魚屋	地内				
I	名	静	実がソ	7 場建記	及工事	1			
事 :	名	公	性下 力	k道事業					

入札工事の見積資料に関する質問要領

工事名及び工事番号 : 静渓ポンプ場建設(第21-1)工事 舞下水工第201号

設計図書(特記仕様書、図面等)及び見積り資料(販売金抜き設計書)に関する質問は別途添付の質問様式に記載し、文書(FAX可)により、「記に問い合せて下さい。電話・ロ頭による質問は受け付けません。質問受付期間終了後、FAX等により当工事指名全業者あてに回答します。 質問回答について

<u>回答期日を過ぎても回答書が届かない場合は、担当課までお問い合わせください。</u>

資料① 見積り参考資料

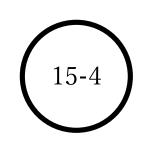
: 令和3年4月19日(月) から 令和3年5月13日(木) 正午 まで 質問受付期間

令和3年5月17日(月)正午(予定) 回答期日

問合せ先 : 舞鶴市 上下水道部 下水道整備課 TEL 0773-66-1029

> FAX 0773-66-0510

入札工事の見積資料に関する質問書


令和 年 月

工事名:	静渓ポンプ場建設(第21-1)工事 会社名:	舞下水工第201号
担当課:	舞鶴市 上下水道部 下水道整備課 FAX 0773-66-0510	(NO.)

番号 内訳表 番号 仕様書項 図面番号 質問内容	

見積参考資料(資料①)

I	事	名	静渓ポンプ場建設(第21-1)工事
工	事番	뮹	舞下水工第201号
担	当	課	舞鶴市 上下水道部 下水道整備課
F	Α	Χ	0773-66-0510

歩掛資料	令和2年度 令和2年度 令和2年度 令和2年度	国土交通省 土木工事標準積算基準 国土交通省 土木工事標準積算基準 土木工事標準積算参考資料		(財)建設物価調査会
掛 一 資	令和2年度		赴 (河川• 道蚁絙)	
掛 一 資		土木工事標準積算参考資料	事(1977) 地面棚	(財)建設物価調査会
資	令和2年度			京都府刊
料		下水道用設計標準歩掛表		
				以下余白
	令和2年度	土木工事単価資料【非公開資料】	2月臨時改定版	京都府刊
		建設物価	2月号	(財)建設物価調査会
単 —		積算資料	2月号	(財)経済調査会
価	2020	土木コスト情報	冬号	(財)建設物価調査会
料 ——	2020	土木施工単価	冬号	(財)経済調査会
		建設機械等損料算定表		(社)日本建設機械化協会
	令和2年度	船舶および機械器具等の損料算定基準		(社)日本港湾協会
				以下余白
	令和2年度	日特建設 株式会社	<基礎工事(N1ジェット工法)>	06-62322109
	令和2年度	株式会社 ヒノデ開発	<基礎工事(N1ジェット工法)>	0829-40-5582
	令和2年度	双栄基礎工業 株式会社	<基礎工事(N1ジェット工法)>	06-6777-7201
	令和2年度	株式会社 日本ピット	<付帯工(吊フック)>	06-6155-8420
見	令和2年度	プレパイ工業 株式会社	<付帯工(吊フック)>	0774-63-7247
積	令和2年度	四国化成工業 株式会社	<付帯工(格子フェンス)>	06-6339-4976
り ・	令和2年度	ユアサ商事 株式会社	<付帯工(格子フェンス)>	06-6266-4500
カタ	令和2年度	株式会社 ヤブ原	<付帯工(格子フェンス)>	06-6385-4551
口	令和2年度	福西鋳物 株式会社	<付帯工(落込式取手)>	06-6541-2924
グ 等	令和2年度	株式会社 スギモト	<付帯工(落込式取手)>	072-949-3556
単	令和2年度	有限会社 ニシヤマ製作所	<付帯工(落込式取手)>	072-677-3775
資	令和2年度	西武ポリマ化成 株式会社	<付帯工(止水板)>	06-6252-8381
料	令和2年度	 株式会社 ゴウダ	<付帯工(止水板)>	078-521-2451
	令和2年度	クリヤマ 株式会社	<付帯工(止水板)>	06-7662-8973
	令和2年度	特別単価調査【非公開】	<付帯工(合成木材角落)>	
			1	以下余白

静渓ポンプ場建設(第21-1)工事 特記仕様書

1. 工事番号及び工事名

舞下水工第201号 静渓ポンプ場建設(第21-1)工事

2. 工事場所

舞鶴市 字魚屋 地内

3. 工事概要

土工・仮設工・基礎工・躯体工・付帯工

4. 工 期

契約日の翌営業日から令和5年1月31日限り

5. 工事の種類

本工事は、建設業法(昭和24年5月24日法律第100号)別表第1の上欄に掲げる「土木一式工事」に該当する。

- 6. 工事に適用する仕様書
 - (1) 本工事は、本特記仕様書、舞鶴市工事共通仕様書(平成24年版)及び舞鶴市工事共通仕様書1-2(用語の定義)第10に 規定する工事共通仕様書として、次の仕様書を適用する。
 - · 「土木工事共通仕様書(案)」平成29年9月 京都府刊

ただし、第1編 共通編 第1章 総則を除く

- ・「下水道土木工事必携(案)」2017年版 公益社団法人 日本下水道協会
 - 1. 下水道土木工事共通仕様書(案)

ただし、第1章 管路 第1節 総則を除く

第2章 処理場・ポンプ場 第1節 総則は除く

(2) 下請契約を締結する場合は、舞鶴市共通仕様書の2-2施工体制台帳「1. 一般事項」及び「4. 対象以外の工事」を適用除外とし、請負代金額に関係なく国土交通省令に従って記載した施工体制台帳を作成し、工事現場に備え付けるとともに、その写しを監督職員に提出しなければならない

7. 工事関係図書

舞鶴市工事共通仕様書 2-1 の規定による工事関係図書は「I土木関連工事」の規定を適用する。

(2)

8. 施工管理基準

「下水道土木工事必携(案)2017年版」の2.下水道土木工事施工管理基準及び規格値(案)に基づき施工管理を行い、工事内容に応じた施工管理計画を立案し施工計画書に記載すること。

なお、当該基準に定めのない工種については、「土木工事施工管理基準」平成29年9月 京都府刊により行うものとする。 それ以外の工種については監督職員と協議のうえ、管理方法を定めるものとする。

g 段階確認

本工事における段階確認は以下のとおりとする。

種別	細 別	確認時期	備 考
事前測量		法線位置出し時	
仮設工	鋼矢板·H型鋼	施工前及び施工中	
基礎工	地盤改良	施工前及び施工中	
躯体工	鉄筋・型枠	コンクリート打設前	
躯体工	コンクリート	受入時及び4週後	

10. 工事標識の設置

舞鶴市工事共通仕様書3-8の工事目的の記載内容は下記のとおりとする。

「西市街地の浸水被害軽減のために静渓ポンプ場の築造をしています。」

11. 工事測量

舞鶴市工事共通仕様書3-15の規定による工事測量は「I土木関連工事」の規定を適用する。

12. 工事材料の取扱い

本工事は、舞鶴市工事共通仕様書及び下水道土木工事必携(案)を適用する。なお、当該基準に定めのないものは、下記に示すとおりとする。それ以外の材料を使用する場合は、監督職員と協議のうえ定めるものとする。

(1) 資材:掘削土(盛土用流用)

掘削時に本工事箇所から発生する土砂について、所定(発生土利用基準)の土質試験を行い利用可能であれば発生土を 利用するものとする。

- (2) 資材: 山土(盛土用)
 - 1. 設計CBRが6以上かつ粒度分布が滑らかなもの
 - 2. 不純物(木片、草等)を含まないもの

(3) 資材: 再生クラッシャーラン

再生クラッシャーランを河川に係る工事(低水護岸等の水際工作物)のコンクリート擁壁、コンクリートブロック積の 天端および胴込・裏込材等に使用する場合は、アスファルト塊の混入は不可とする。

13. ポンプ場【土木工事】について

本工事においては、下水道土木工事必携(案)を適用することとし、構造細目共通事項等については図面によるものとする。

14. 現場作業の着手日について

ポンプ場建設工事に先立ち、地元説明会及び事前家屋調査を行う予定であるため、監督職員と調整すること。なお、説明会予定自治会は竹屋自治会、魚屋自治会、魚屋住吉自治会である。

15. 通行制限について

本工事に伴う通行制限については、受注者が道路使用許可の手続を行うものとし、道路使用許可申請に必要な書類(施工体制図、工程、安全管理図等)は受注者で作成すること。警察から道路使用許可証が発行されたら発注者に道路使用許可証の写しを提出すること。

16. 占用申請について

本工事を実施するにあたり、現在、発注者は河川管理者に対し河川占用許可申請、道路管理者に対し道路占用許可申請中である。本工事の着手は河川・道路占用許可後とし、監督員の指示により着手するものとする。

17. いさざ漁について

本工事箇所付近においては、いさざ漁が例年、2月~3月に行われている。いさざ漁の期間中は漁に影響する工事は中止することとし、工事の中止にあたっては、漁に影響するものが川にない状態とすること。また、本工事は河川の水濁が懸念されるため、その防止に努めること。

18. 施工順序(工程管理) について

本工事を実施するにあたり、仮設工・基礎工・土工・躯体工・付帯工の施工順序(工程管理)については、いさざ漁や出水期(6月中旬から10月中旬)における仮設排水計画等を十分考慮した上で計画立案すること。

19. 残土一時仮置場について

残土一時仮置場として下水道処理施設である西浄化センター内の敷地を予定している。使用に当たっては西浄化センターへ使 用条件等を確認し、特に施設内及び施設周辺道路への美化清掃に努めること。

(4)

20. 指定副産物の処分について

本工事により発生する次の内容については、適正に処分すること。(鉄くずは有価物として処分)

運搬の際は落下や飛散防止の措置を講じること。また、舞鶴市共通仕様書 3-7 に規定する指定副産物について、下記に該当する場合は設計変更の対象とする。

- (1) 施設が受入量を超える等、処理不能状態となった場合。
- (2) 発生した建設副産物の条件が、下記の表に明示されている条件と異なった場合。
- (3) 処理業の不適正な行為を行政機関が確認した場合。
- (4) 近隣に新規の許可施設が開設された場合。

工種	建設副産物	事業所名	条件
土工	土 砂	鈴木建設㈱:綾部市	土壌調査結果が基準以下
基礎工	泥 水	京都コン砕㈱:京都市	成分性状等の協議

受け入れ条件等の確認先

鈴木建設㈱:電話 0773-42-2465 綾部市 京都コン砕㈱:電話 075-662-8357 京都市

21. 交通誘導員について

作業時(施工時)は必ず配置し、規制区間の起点終点にそれぞれ1名ずつ配置すること

 来的 (海里的) 162) 品色 O / / / / / / / / / / / / / / / / / /	With the care care and a care and				
配置場所	交通誘導員				
市道施工 (起終点等)	3名/日(交代要員含む)				

その他、必要個所、人数については監督職員との協議によるものとする。

22. 地下埋設物・架空線、運搬経路等について

本工事を実施するにあたり、地下埋設物や架空線の位置及び埋設深・高さ並びに工事車両の運搬経路(搬入・搬出)等について、事前に十分調査した上で、施工計画を立案すること。

なお、港湾護岸にはタイロッドが埋設されているので、仮設構台等施工の際には事前に十分調査した上で、施工計画を立案すること。

23. 着工前調査について

本工事を実施するにあたり、受注者は受注者の負担により、工事着手前の現場付近の状況(側溝、電柱、標識、舗装、区画線及び家屋や生垣・土間等)が確認できるように写真等の記録を作成し、工事着手前に調査結果を提出しなければならない。 なお、民地を調査する場合は、その旨の了解を得ること。

24. 安全管理について

本工事においては、工事期間中、受注者は工事現場に工事関係者以外の者が立ち入らないよう仮囲いを設置するなど、日中だけでなく夜間においても安全管理に努めること。

25. 第三者との交渉について

受注者は工事に関して第三者から交渉を受け、または第三者と交渉する必要がある時は監督職員に報告しなければならない。

26. 設計図面(CADデータ)の貸与について

本工事にて貸与する設計図面の電子データは、平面図・縦断図・横断図・構造図のV-nas データであり、受注者から要求があった場合には貸与する。データの貸与・返却については、工事打合簿にて記録すること。

27. 工事書類の簡素化について

- (1) 「土木工事書類一覧表」に基づき実施するものとする。また、工事打合簿(指示、協議、承諾、施工計画書の提出は除く)、段階確認書、確認・立会書、夜間・休日作業届の書類の提出については、電子メールにて提出できるものとする。なお、電子メールの宛先は「jg-g-seibi@city.maizuru.lg.jp」とし、表題には工事名等を明記すること。
- (2) 軽微な変更の場合(工期や数量だけの変更等)は変更施工計画書の提出を不要とする。

1	_		/
	h	_	r
- 1	.)	_	

*本設計書は参考資料であり、あくまで発注者の予定価格を算出するためのもので、何ら契約上の拘束力を生じるものではない。 令和 3 年度 工事設計書(参考資料) 当初 事 番 号 事 名 工 舞下水工第201号 静渓ポンプ場建設(第21-1)工事 施工箇所 舞鶴市 字魚屋 地内 請負対象額 設 計 額 I 期 令和05年01月31日限り 今回支払額 摘 要 種 数 量 静渓ポンプ場土木工事 1式 躯体工 1式 設 計 概 要 付帯工 1式 土工 1式 仮設工 1式

舞鶴市

1式

工事費総括表

基礎工

費目	金額	摘要
	(円)	
工事費		
本工事費		
华工 尹貝		
下水道工事(3)01		
消費税相当額計		
コリロ TL 7 パムナ FA 走		
測量及び試験費		
用地及び補償費		
715-01X O HIDRER		
機械器具費		
営繕費		
丁市14.#		
工事雑費		
需用費		
11071352		

令和	^{令和 3 年度} 積 算 条 件					
	工 事 番 号	工 事 名				
舞下水工第201号	舞下水工第201号 静渓ポンプ場建設(第21-1)工事					
施工箇所舞	。					
,	単価適用日	令和03年02月01日 公共				
	步掛適用日	令和02年08月20日 下水道				
	諸経費適用日	公共 令和02年度				
	工種区分	下水道工事(3)				
	単価適用地区	舞鶴市				
	前払い金支出割合					
積 算 条 件	保証の方法	ケース 1 (金銭的保証)				
	契約保証金免除金額	5,000,000円				
	施工地域補正条件	市街地(DID補正)				

舞鶴市

静渓ポンプ場建設(第21-1)工事

	本 エ	事	費内	訳	書		
費 目 ・ 工 種 ・ 種 別 ・ 細 目	数量	単位	単 価	金	額	明細単価番号	基準
下水道工事(3)01							
下水道(3)						Lv1	
静渓ポンプ場土木工事	1	式				Lv2	
躯体工	1	式				Lv3	
躯体工(1)	1	式				Lv4	
躯体工(2)	1	式				明 1号 Lv4	
	1	式				明 2号	
付帯工	1	式				Lv3	
付帯工(1)	1	I\				Lv4 明 3号	
付帯工(2)	1	式				Lv4	
	1	式				明 4号	

静渓ポンプ場建設(第21-1)工事

	本 ユ	事	費	訳	書			
費目・工種・種別・細目	数量	単位	単 価	金	額	明細単価番号	基	準
±Ι						Lv3		
±Ι	1	式				Lv4		
						明 5号		
ICAD T	1	式						
仮設工						Lv3		
	1	式						
仮締切工						Lv4		
						明 6号		
仮桟橋工	1	式				Lv4		
						明 7号		
	1	式						
交通誘導員						Lv4		
	1	式				明 8号		
基礎工						Lv3		
基礎工	1	式				Lv4		
						明 9号		
△丁事 弗⇒↓	1	式				-,, 0-5		
妾工事 費 計								

工内

舞鶴市

静渓ポンプ場建設(第21-1) T事

静渓ボンブ場建設(第21-1)工事										
	本 」	事	費	内	訳	書				
		_								
費目・工種・種別・細目	数 量	単位	単 伯	西	金	額	明細単価番号	基	準	I
共通仮設費計										
	1	式								
共通仮設費(積上げ)		II.								
	4	-+								
運搬費	1	式								
		_15								
貨物自動車による運搬(1車1回) 往復	1									
22t車 片道運搬距離10km		4.					仕 112 号			
仮設材等の積込み・取卸し費	2	台								
基地積込 現場 基地取卸							仕 113 号			
仮設材等の運搬(1車1回) 往復	212	t								
製品長12m以内 片道運搬距離30km 割増なし							仕 114 号			
役務費	212	t								
仮設用電力	1	式								
引込線工事										
工事用電力基本料金(低圧)	2	式								
	17	kW月								·

渓ポンプ場建設(第21-1)工事						
	本	[事	費内	訳書		
費目・工種・種別・細目	数量	単位	単 価	金 額	頁 明細単価番号	基準
技術管理費						
	1	式				
土壤調査(一式) 土壌調査(1)17品目+溶出液作成料						
	1	式				
土壌調査(一式) 土壌調査(2)全項目(溶出液作成料を含む)						
	1	式				
共通仮設費(率化)						
	1	式				
共通仮設費率分						市街地(DID補正)
·····································	1	式				
10		<u>-+</u>				
現場管理費	1	式				
	1	式				市街地(DID補正)
工事原価						
	1	式				
一般管理費等						
	1	式				ケース 1 (金銭的保証)

工内

舞鶴市

静渓ポンプ場建設(第21-1)工事

	本	- 事	費	訳書		
費目・工種・種別・細目	数量	単位	単 価	金額	明細単価番号	基準
工事価格						
	1	式				
消費稅等相当額						
	1	式				
	8 8 8 8 8					

入 札 結 果 表

16

I	事名	静渓ポンプ場建設(第21-	1)工事			
場	所	舞鶴市 字魚屋 地	内				
入	、札 年 月 日	2021年5月25日(火)		9:00			
入	、札 執 行 場 所	(電子入札システム)					
	業	者 名		1	2	3	備考
1	アトラス・水嶋工業 共同企業体	•山内道路特定建設工事	失格	539,998,000			失格
2	今村•京舞•伊藤特	定建設工事共同企業体	失格	540,280,000			失格
3	興星·赤星·友興特	定建設工事共同企業体	失格	539,730,000			失格
4	新和・ツバサ・東舞	特定建設工事共同企業体		563,700,000			
5	田中・総進・シグマ	持定建設工事共同企業体	失格	540,598,000			失格
6	鶴美・ホクタン・サン 企業体	·開発特定建設工事共同		542,000,000			落札
7	永田・藤岡・吉村特	定建設工事共同企業体	失格	540,000,000			失格
8	丸富·大進·東電気 体	特定建設工事共同企業	失格	540,395,000			失格

				予定価格(消費税抜き) 最低制限価格(消費税抜き)	¥593,403,000 ¥540,908,000
落 鶴	札 }美• ホ	者 クタン	・サン開発特定建設工事共同企業体	入札書記載金額 落札金額(10%加算)	¥542,000,000 ¥596,200,000

工事打合せ経過一覧

t.吧 見		
方向	内容	
JV→市	河川内障害物の報告	
市→JV	工事一時中止指示(R3.11.1~R4.3.31)	
JV→市	追加ボーリング調査の申し出	
JV→市	再度追加ボーリング調査の申し出	
市→JV	一時中止の延長指示(R4.4.1~R4.6.30)	
市→JV	一時中止の延長指示(R4.7.1~R4.8.31)	
市→JV	一時中止の延長指示(R4.9.1~R4.10.31)	
市→JV	障害物の撤去指示	
市→JV	一時中止の延長指示(R4.11.1~R4.11.30)	
市→JV	仮締切工、地盤改良 変更指示	
市→JV	一時中止の延長指示(R4.11.1~R4.11.30)及び	
	R4.12.16 からの工事再開指示	
市→JV	地盤改良変更指示	
市→JV	一時中止指示(R5.3.16~R5.6.15)	
市→JV	一時中止延長指示(R5.6.16~R5.7.31)	
市→JV	一時中止延長指示(R5.8.1~R5.10.15)	
市→JV	一時中止延長指示(R5.10.16~R5.12.15)	
JV→市	高圧噴射地盤改良の変更申し出	
	方向 JV→市 市→JV JV→市 プV→市 ホ→JV 市→JV 市→JV 市→JV 市→JV 市→JV 市→JV 市→JV 市	 方向 内容 JV→市 河川内障害物の報告 市→JV 工事一時中止指示(R3.11.1~R4.3.31) JV→市 追加ボーリング調査の申し出 市→JV 一時中止の延長指示(R4.4.1~R4.6.30) 市→JV 一時中止の延長指示(R4.7.1~R4.8.31) 市→JV 一時中止の延長指示(R4.9.1~R4.10.31) 市→JV 市→JV 市・JV 一時中止の延長指示(R4.11.1~R4.11.30) 市→JV 市・JV 一時中止の延長指示(R4.11.1~R4.11.30) 市→JV 市・JV 中中止の延長指示(R4.11.1~R4.11.30)及びR4.12.16からの工事再開指示 市→JV 市・JV 一時中止指示(R5.3.16~R5.6.15) 市→JV 一時中止延長指示(R5.6.16~R5.7.31) 市→JV 一時中止延長指示(R5.8.1~R5.10.15) 市→JV 一時中止延長指示(R5.10.16~R5.12.15)

4. 調査結果

4.1 ボーリング調査結果

巻頭の調査位置平面図に示す箇所で調査ボーリングを実施した。

調査ボーリングは、地盤改良深度までは ϕ 86mm のオールコアボーリング、それ以深は ϕ 66mm のノンコアボーリングを行い、1m 毎に標準貫入試験を実施した。ボーリング調査結果より、土質分布深度およびN 値を下記表-4.1.1 に整理し、詳細を巻末のボーリング柱状図に示す。また次頁以降、ボーリング孔の概要を述べ 15 頁図-4.1.1 に「推定地質断面図」を示す。

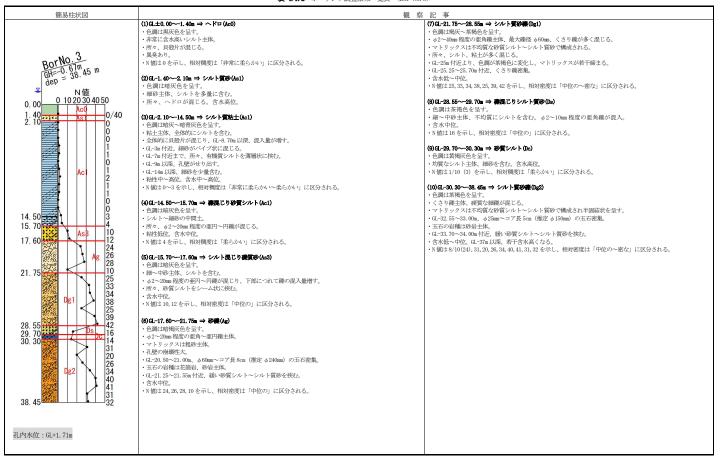
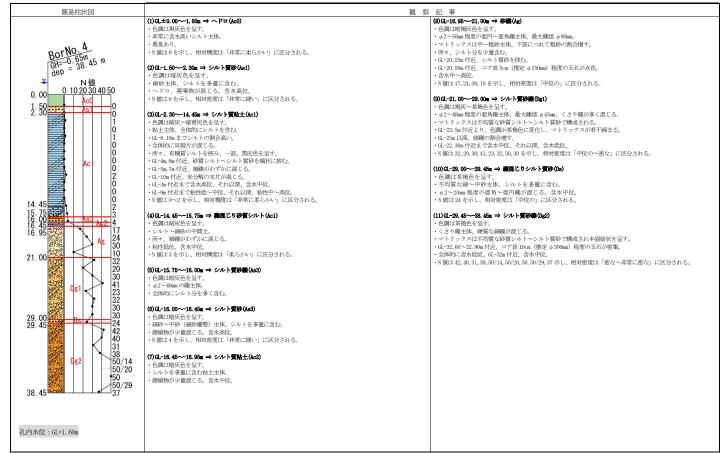
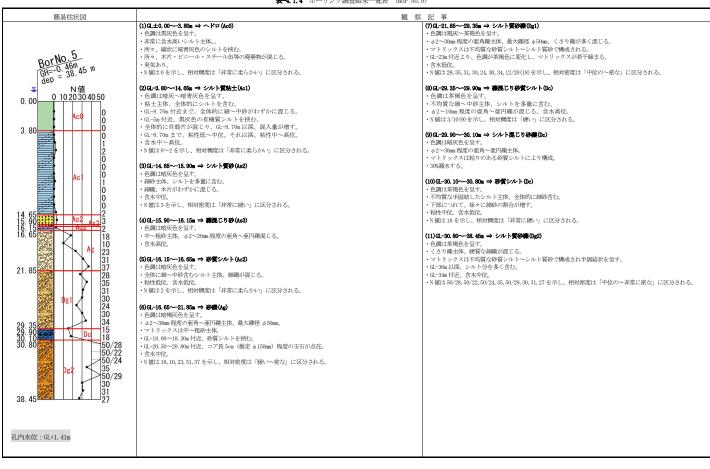
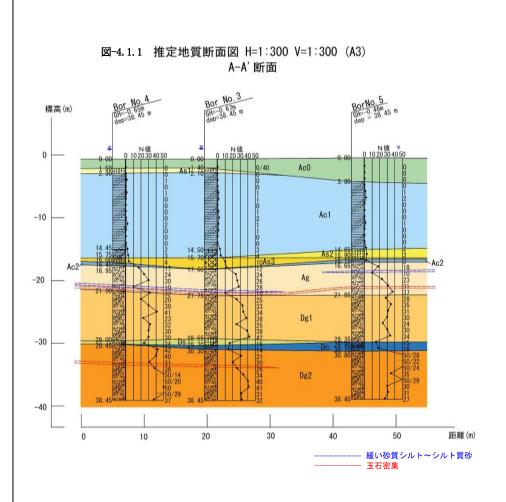
表-4.1.1 調査地の地質構成表

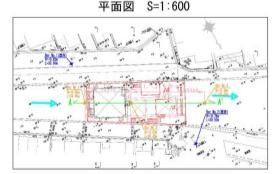
j 1	時 記 2		主な土質区分		分布深度 上段:GL- m 下段:GH= m		N 値 min〜max (平均・標準偏差値)	層厚 (m)	
1	4	号	70		BorNo. 3	BorNo. 4	BorNo. 5	(十均・保华禰左旭)	
		Ac0	沖積粘性土層 0	ヘドロ	0.00~1.40 -0.67~-2.07	0.00~1.50 -0.65~-2.15	0.00~3.80 -0.46~-4.26	0 (0 • 0)	1.40~3.80
		As1	沖積砂質土層1	シルト質砂	1. 40~2. 10 -2. 07~-2. 77	1.50~2.30 -2.15~-2.95	-	-	0.70~0.80
		Ac1	沖積粘性土層 1	シルト質粘土 礫混じり砂質シルト	2. 10~15. 70 -2. 77~-16. 37	2.30~15.75 -2.95~-16.40	3. 80~14. 65 -4. 26~-15. 11	0~4 (1 · 0)	10.85~13.60
	完新世	As2	沖積砂質土層 2	シルト質砂	-	-	14. 65~15. 90 -15. 11~-16. 36	3	1. 25
		As3	沖積砂質土層3	シルト混じり礫質砂 シルト質砂礫 礫混じり砂 シルト質砂	15. 70∼17. 60 -16. 37∼-18. 27	15.75~16.45 -16.40~-17.10	15. 90~16. 15 -16. 36~-16. 61	4~12 (9 ⋅ 7)	0. 25∼1. 90
第四紀		Ac2	沖積粘性土層 2	シルト質粘土 砂質シルト	-	16. 45~16. 95 -17. 10~-17. 60	16. 15~16. 65 -16. 61~-17. 11	2	0. 50
		Ag	沖積礫質土層	砂礫	17. 60~21. 75 -18. 27~-22. 42	16.95~21.00 -17.60~-21.65	16. 65~21. 85 -17. 11~-22. 31	10~37 (22 ⋅ 18)	4. 05~5. 20
		Dg1	洪積礫質土層 1	シルト質砂礫	21. 75~28. 55 -22. 42~-29. 22	21.00~29.00 -21.65~-29.65	21. 85~29. 35 -22. 31~-29. 81	18~42 (31 • 27)	6.80~8.00
	更新	Ds	洪積砂質土層	礫混じりシルト質砂	28. 55~29. 70 -29. 22~-30. 37	29.00~29.45 -29.65~-30.10	ı	16~24 (20 · 17)	0. 45~1. 15
	世	Dc	洪積粘性土層	砂質シルト 礫混じり砂質シルト シルト混じり砂礫	29. 70~30. 30 -30. 37~-30. 97	-	29. 35~30. 80 -29. 81~-31. 26	3~18 (10 ⋅ 6)	0.60~1.45
		Dg2	洪積礫質土層 2	シルト質砂礫	30. 30~38. 45 -30. 97~-39. 12	29. 45~38. 45 -30. 10~-39. 10	30. 80∼38. 45 -31. 26∼-38. 91	20~50以上 (38·33)	7.65~9.00

13

○ボーリング孔の概要

表-4.1.2 ボーリング調査結果一覧表 (Bor No. 3)


表-4.1.3 ボーリング調査結果一覧表 (Bor No. 4)

15

地質層序表

地質年代		土層記号	地層名	主な土質名	N値 min~max (平均・標準偏差値)	層厚 (m)	
		Ac0	沖積 粘性土層0	^ FD	0	1.40~3.80	
		As1	沖積 砂質土層1	シルト質砂	2	0. 70~0. 80	
		Ac1	沖積 粘性土層1	シルト質粘土 礫混じり砂質シルト	0~4 (1 · 0)	10, 85~13, 60	
W	完新	As2	沖積 砂質土層2	シルト質砂	3	1. 25	
	世	As3	沖積 砂質土層3	シルト混じり機関砂 シルト質砂理 機混じり砂 シルト質砂	4~12 (9 · 7)	0.25~1.90	
四		Ac2	沖積 粘性土層2	シルト質粘土 砂質シルト	2	0.50	
紀		Ag	沖積 礫質土層	砂礫	10~37 (22 · 18)	4.05~5.20	
		Dg1	洪積 礫質土層1	シルト質砂礫	18~42 (31 · 27)	6, 80~8, 00	
	更	Ds	Ds 洪積 砂質土層1 機湿じ		16~24 (20 · 17)	0, 45~1, 15	
	新世	White + BS 研選し		砂質シルト 礫混じり砂質シルト シルト混じり砂傑	3~18 (10 · 6)	0.60~1.45	
	-	Dg2	洪積 礫質土層2	シルト質砂礫	20~50以上 (38・33)	7. 65~9. 00	

契約変更 2

○設計変更に伴う契約変更の取扱いについて

昭和44年3月31日 建設省東地厚発第31号の2 官房長から各地方建設局長 (東北を除く。)あて

標記について、東北地方建設局長から別紙1のとおり照会があり、これに対して別 紙2のとおり回答したので、今後これに準拠して処理することにつきとくに異議がな いので了知するよう通知する。

別紙1

設計変更に伴う契約変更の取扱いについて (照会)

昭和44年3月22日 東建契44第132号 東北地方建設局長から官房長あて

標記について、別紙により実施してよろしいか照会する。

別紙

設計変更に伴う契約変更の取扱いについて

(目的)

1 この取扱いは、設計変更に伴う契約変更の取扱いに関し必要な事項を定めること により、契約に関する事務の簡素化と合理化を図るとともに、請負代金の支払を迅 速にする等請負契約の双務性の維持等に資することを目的とする。

(定義)

- 2 この取扱いにおいて、次の各号に掲げる用語は、それぞれ当該各号に定めるとこ ろによる。
 - 一 設計変更 工事請負標準契約書第15条及び第16条 編 注 現行の工事請負契約 書では第18条及び第19条に当たる。)の規定により図面又は仕様書(土木工事にあっ ては、金額を記載しない設計書を含む。以下同じ。)を変更することとなる場合に おいて、契約変更の手続の前に当該変更の内容をあらかじめ請負者に指示するこ とをいう。
 - 二 単価、工事量又は一式工事費の変更 設計変更に伴い、工事費内訳明細書<mark>(以</mark> 下「内訳書 | という。)の単価、工事量又は一式工事費を増減することとなる場合 をいう。
 - (注) 単価の変更とは、工事現場の実態によりコンクリート側溝の壁厚を変更し たため単価に変更があるようなものをいい、工事量の変更とは、工事現場の 実態により単価の変更を生ずることなく工事量を増減することをいい、一式 工事費の変更とは、数量を一式として表示した工事(以下「一式工事」とい う。) のうち請負者に設計条件又は施工方法を明示したものにつき、工事現場 の実態により当該設計条件又は施工方法を変更し、その結果当該工事費に増 減を生ずることをいう。

三 新工種 設計変更に伴い、内訳書に設計変更に係る工事に対応する工種がない ため、当該工事の種別、細別等(営繕工事(事業費をもつてする営繕工事を除く。 以下同じ。)にあつては、科目、細目等)を新たに追加することとなる場合におけ る当該工事をいう。

- 3 設計表示単位に満たない設計変更は、契約変更の対象としないものとする。
- (注) 工事量の設計表示単位は、別に定める設計積算に関する基準において工事 の内容、規模等に応じ適正に定めるものとする。
- 4 一式工事については、請負者に図面、仕様書又は現場説明において設計条件又は 施工方法を明示したものにつき、当該設計条件又は施工方法を変更した場合のほか、 原則として、契約変更の対象としないものとする。
- 5 変更見込金額が請負代金額の30%をこえる工事は、現に施工中の工事と分離して 施工することが著しく困難なものを除き、原則として、別途の契約とするものとす る。

- 6 土木工事に係る設計変更は、その必要が生じた都度、総括監督員がその変更の内 容を掌握し、当該変更の内容が予算の範囲内であることを確認したうえ、文書によ り、主任監督員を通じて行なうものとする。ただし、変更の内容が極めて軽微なも のは、主任監督員が行なうことができるものとする。
- 7 前項の場合において、当該設計変更の内容が次の各号の一に該当するものである ときは、あらかじめ、契約担当官等の承認を受けるものとする。
- 一変更見込金額が請負代金額の10%又は1.000万円をこえるもの
 - 二 構造、工法、位置、断面等の変更で重要なもの
 - [編 注] 「10%」は「20%(概算数量発注に係るものについては25%)」に、「1,000万円」 は「4,000万円」に変更されている。

(営繕工事に係る設計変更の手続)

8 営繕工事に係る設計変更は、原則として、その必要が生じた都度、当該設計変更 の内容に関する契約担当官等の指示又は承認に基づき、総括監督員が文書により行 なうものとする。

(設計変更に伴う契約変更の手続)

- 9 設計変更に伴う契約変更の手続は、その必要が生じた都度、遅滞なく行なうもの とする。ただし、軽微な設計変更に伴うものは、工期の末(国庫債務負担行為に基 づく工事にあつては、各会計年度の末及び工期の末) に行なうことをもつて足りる ものとする。
 - (注) 軽微な設計変更に伴うものとは、次に掲げるもの以外のものをいう。
 - イ 構造、工法、位置、断面等の変更で重要なもの
 - ロ 新工種に係るもの又は単価若しくは一式工事費の変更が予定されるもの で、それぞれの変更見込金額又はこれらの変更見込金額の合計額が請負代金 額の10%をこえるもの

[編注] 「10%」は「20%(概算数量発注に係るものについては25%)」に変更されている。 (部分払)

10 部分払は、既済部分検査の時期における内訳書により出来高を確認し、請負代金 額を限度として行なうものとする。この場合において、工事量の変更が予定される ものは当該変更工事量を対象とし、単価又は一式工事費に変更が予定されるものの うち変更増となるものは元の単価又は一式工事費によりそれぞれ出来高を確認する ものとし、変更減となることが予定されるもの及び新工種に係るものは出来高の対 象としないものとする。

(入札者又は契約の相手方に対する説明)

11 契約担当官等は、工事を指名競争に付そうとする場合の入札者又は随意契約によ ろうとする場合の契約の相手方に対し契約条項を示す際には、現場説明により、こ の取扱いに定める事項のほか、設計変更に関し必要な事項を了知させておくものと する。

(この取扱いの実施時期)

12 この取扱いは、昭和44年4月1日以降に工事の請負契約を締結するものから実施 するものとする。

設計変更に伴う契約変更の取扱いについて(回答)

昭和44年3月31日 建設省東地厚発第31号 官房長から東北地方建設局長あて

昭和44年3月22日付け東建契44第132号をもつて照会のあつた標記について、下記 のとおり回答する。

ragger per a paga ilagiran naja kuru k

工事を発注するにあたつては、事前の計画及び調査を慎重に行ない、工期中みだり に設計変更の必要が生じないように措置されたい。なお、工事には、その性格上不確 定な条件を前提に設計図書を作成せざるを得ない制約があり、このため予期し得ない 設計変更が発生するものと認められるので、このような原因による設計変更に伴う契 約変更については、当分の間、照会のとおり処理することについてはやむを得ないも のと了承する。ただし、照会の9の取扱いについて、軽微な設計変更に伴うものであ つても、出来高認定の留保期間が長期に亘るため部分払にあたり請負者に著しく不利 になると認められるものがあるときは、出来高認定の留保期間が長期に亘らないよう 当該設計変更に伴う契約変更の手続をとることとされたい。